Tag Archives: Householder 矩陣

單範正交基底

本文的閱讀等級:中級 歐幾里得空間 和 是具有內積運算的向量空間 (見“歐幾里得空間的數學結構”),稱為內積空間。歐幾里得空間 的標準基底 由正交 (垂直) 的單位向量組成,即 且 。令 與 逆時針旋轉 徑度,所得的向量 與 是 的另一組基底。同樣地,基底 滿足 和 。我們稱 與 是歐幾里得空間 的單範正交基底[1] (orthonormal basis)。基底造出向量空間的結構,單範正交基底則造出內積空間的結構。若與非正交基底比較,單範正交基底的最大優勢在於具備清晰的幾何意義而且容易計算。通過討論一般內積空間的單範正交基底的等價條件可以幫助你了解這種特殊基底的應用價值。 Advertisements

Posted in 線性代數專欄, 內積空間 | Tagged , , , , | Leave a comment

高階旋轉矩陣

本文的閱讀等級:中級 若 是 階實正交矩陣 (簡稱正交矩陣),,且 ,則 稱為旋轉矩陣。以下設 。正交變換具有保角、保長以及保距性。下面是正交矩陣的等價界定性質 (見“旋轉與鏡射”): 對於任意 ,。 對於任一 ,。 對於任意 ,。 加入條件 的用意在於物體旋轉是剛體運動 (rigid body motion),故而保留方向性 (orientation)。若 和 是同大小的旋轉矩陣,則 且 ,可知 也是旋轉矩陣。

Posted in 線性變換, 線性代數專欄 | Tagged , , | 1 Comment

旋轉與鏡射

本文的閱讀等級:中級 令 為一個 階實矩陣。若 ,即 ,我們稱 為正交矩陣 (orthogonal matrix) 。令 為正交矩陣 的行向量 (column vector),。因此,,即 若 , 若 。正交矩陣的行向量組成一個單範正交集 (orthonormal set)。因為 是實矩陣,,正交矩陣是一種特殊的么正 (unitary) 矩陣,其界定條件為 。正交矩陣繼承么正矩陣的性質,正交變換具有保角、保長以及保距性。下面是正交矩陣的等價界定性質 (證明見“等距同構與么正矩陣”): 對於任意 ,。 對於任一 ,。 對於任意 ,。 本文討論兩種主要的正交矩陣:旋轉與鏡射,並解說兩者的相互表達。為便利說明,我們將使用下列預備知識。假設 ,。使用性質2,,即得 ,故正交矩陣的特徵值的絕對值等於 。正交矩陣歸屬正規 (normal) 矩陣,即 ,因此擁有完整的 個單範正交特徵向量 (見“特殊矩陣 … Continue reading

Posted in 線性變換, 線性代數專欄 | Tagged , , , | Leave a comment

每週問題 January 26, 2015

證明 階對合矩陣 (involutory matrix) 與冪等矩陣 (idempotent matrix) 具有一對一的關係。 A matrix satisfying is said to be an involutory matrix, and a matrix satisfying is said to be an idempotent matrix. Show that there is a one-to-one correspondence between the set of … Continue reading

Posted in pow 內積空間, 每週問題 | Tagged , , | Leave a comment

利用 Householder 變換證明 Schur 定理

本文的閱讀等級:中級 任何一個 階矩陣 皆相似於一上三角矩陣 ,其中 的主對角元為 的特徵值,且必存在一么正矩陣 (unitary matrix) 滿足 (見“特殊矩陣 (3):么正矩陣 (酉矩陣)”),使得 。簡單講,任一方陣皆么正相似於一上三角矩陣,或者說任一方陣定可么正三角化,此事實稱為 Schur 定理。我們曾以 Gram-Schmidt 正交化程序設計了建構式證明 (見“矩陣三角化的 Schur 定理”),本文介紹一個利用 Householder 變換的歸納證法。

Posted in 特徵分析, 線性代數專欄 | Tagged , , | Leave a comment

特殊矩陣 (19):Hessenberg 矩陣

本文的閱讀等級:中級 令 為一 階矩陣。若 , ,則 稱為上 Hessenberg 矩陣,也就是說, 的主對角下標元 (subdiagonal,即 ) 之下的所有元為零。若 的主對角上標元 (superdiagonal,即 ) 之上的所有元為零,則稱為下 Hessenberg 矩陣。此特殊矩陣因德國工程師黑森貝格 (Karl Adolf Hessenberg) 而得名。見下例, 是上 Hessenberg 矩陣, 是下 Hessenberg 矩陣, 同時是上、下 Hessenberg 矩陣,稱為三對角 (tridiagonal) 矩陣 (見“特殊矩陣 (11):三對角矩陣”): 。 明顯地,對稱 Hessenberg 矩陣必定是三對角矩陣。下 … Continue reading

Posted in 特殊矩陣, 線性代數專欄 | Tagged , , , , , , , | Leave a comment

每週問題 February 13, 2012

本週問題是從給定映射關係 來計算 Householder 矩陣。 Pow-Feb-13-12 參考解答 PowSol-Feb-13-12  

Posted in pow 內積空間, 每週問題 | Tagged | Leave a comment

QR 分解的數值計算方法比較

本文的閱讀等級:中級 QR 分解是數值線性代數中具備多種用途的計算工具,主要應用於線性方程、最小平方法和特徵值問題。常見的 QR 分解的計算方法包括 Householder 變換、Givens 旋轉以及 Gram-Schmidt 正交法。本文先回顧 QR 分解的主要性質,介紹 QR 分解於計算最小平方解的應用,並討論上述三種算法的運算量與數值穩定性。

Posted in 線性代數專欄, 數值線性代數 | Tagged , , , , | 9 Comments

Gram-Schmidt 正交化改良版

本文的閱讀等級:中級 設 為一個 階實矩陣,,QR 分解 滿足以下兩個條件: 是 階矩陣,其行向量 (column vector) 組成單範正交 (orthonormal) 向量集, 是 階上三角矩陣。Gram-Schmidt 正交化是最常見於一般線性代數教科書的 QR 分解演算法 (見“Gram-Schmidt 正交化與 QR 分解”),以下稱之為古典 (classical) Gram-Schmidt 正交化,簡稱 CGS。不幸的是,當數值計算引入捨入 (roundoff) 誤差時,CGS 最終產生的 矩陣的行向量正交性可能變的很糟,就此觀點而言,CGS 是數值不穩定的。本文介紹 CGS 的一個修改版本,稱為改良 (modified) Gram-Schmidt 正交化,簡稱 MGS[1,2]。

Posted in 線性代數專欄, 數值線性代數 | Tagged , , , | 10 Comments

Householder 變換於 QR 分解的應用

本文的閱讀等級:中級 目前已知三種主要的 QR 分解計算方法包括 Gram-Schmidt 正交化 (見“Gram-Schmidt 正交化與 QR 分解”)、Givens 旋轉 (見“Givens 旋轉於 QR 分解的應用”),和 Householder 變換。本文介紹最後一種方法:利用特殊設計的 Householder 變換於矩陣的正交化簡 (orthogonal reduction),從而得到 QR 分解。

Posted in 線性代數專欄, 內積空間 | Tagged , , , , | 11 Comments