Tag Archives: Jacobi 公式

線性微分方程解的存在性與唯一性

本文的閱讀等級:中級 考慮一物理系統,在任意時間 ,該系統的狀態完全由 個函數 描述。在任意時間 ,假設這些函數的變化率由它們的函數值所決定,表示如下: , 並給定初始條件 ,。如果數組 滿足 , 我們稱系統處在均衡狀態 (equilibrium state)。除非受到外力干擾,否則系統不會離開均衡狀態。我們對於均衡狀態附近的系統行為特別感興趣,精確地說,我們想瞭解系統在微小擾動下是否具備穩定性。若系統受到擾動後最終可以返回均衡狀態,便稱此系統是穩定的,否則稱為不穩定。為了探討這個問題,設定 , 其中 是微小擾動量。將上式代入前面的微分式,寫出泰勒展開式, 當 ,,令 。如果忽略高階項,物理系統在均衡狀態 附近的行為可以用下列線性微分方程近似: , 或表示為矩陣形式 。 令 是一 維向量且 是一 階矩陣。定義 ,可得簡明的向量微分方程式 。 我們研習常微分方程的一個強烈動機即在解出 ,,以確定系統的漸近行為 (當 )。本文採用矩陣分析證明線性微分方程解的存在性與唯一性,給出齊次常微分方程的解並定義矩陣指數,最後討論矩陣微分方程解的可逆性 (線性代數與微分方程的一般關聯性討論請見“從線性代數看微分方程”)。

Posted in 線性代數專欄, 應用之道 | Tagged , , , , | Leave a comment

跡數的性質與應用

本文的閱讀等級:初級 令 為一個 階矩陣, 的跡數 (trace,或簡稱跡) 定義為主對角元之和,如下: 。 跡數 與行列式 都是方陣 的函數,但跡數不像行列式擁有豐富的數學性質與應用,因此通常只零星出現於基礎線性代數課本裡的練習問題中。本文介紹跡數的運算規則,並推導一些特殊矩陣的跡數性質以及跡數於矩陣內積運算的應用。

Posted in 特徵分析, 線性代數專欄 | Tagged , , | 6 Comments