Tag Archives: Jacobian 行列式

每週問題 February 6, 2017

計算多變數高斯積分。 Let be an real symmetric positive definite matrix. Prove that , where .

Posted in pow 二次型, 每週問題 | Tagged , | Leave a comment

多變量常態分布

本文的閱讀等級:中級 在數學、統計學、物理和工程等領域,常態分佈 (normal distribution,Gaussian distribution) 是一個非常重要的連續型機率 (概率) 分布模型。本文將回答下列問題: 如何推導多變量常態分布的機率密度函數 (probability density function)? 怎麼證明服從常態分布的隨機向量的線性變換也為常態分布? 怎麼證明服從常態分布的多隨機變數的子集合亦為常態分布? 如何判別二組 (常態分布) 隨機變數集的獨立性? 具有常態分布的條件機率密度函數為何? 給定條件機率密度函數 ,如何計算 ? 為了避免繁瑣的積分運算,我們以動差生成函數 (moment generating function) 推演,這個方法的理論基礎在於動差生成函數唯一決定機率密度函數 (見“動差生成函數 (上)”)。下面先介紹標準多變量常態分布,隨後通過仿射變換 (affine transformation) 推廣至一般多變量常態分布。

Posted in 機率統計 | Tagged , , , , , , , , , | Leave a comment

Jacobian 矩陣與行列式

本文的閱讀等級:中級 令 為一個向量函數。對於 維實向量 , 具有下列形式: , 其中 , 是 的定義域。例如,極座標至卡氏座標的轉換是一個向量函數: , 其中 ,。如果向量函數 的數學形式相當複雜,線性化是一個常用的簡化方法。針對單變量函數 ,在 附近我們可用直線 近似 。推廣至多變量函數,令 為一個仿射 (affine) 變換 (見“仿射變換”),表示如下: , 其中 是一個 階實矩陣,。下面解釋如何以仿射變換 近似向量函數 ,由此衍生 的導數矩陣,稱為 Jacobian 矩陣 (或簡稱 Jacobian),隨後介紹 Jacobian 行列式與其應用,以及 Jocabian 矩陣與 Hessian 矩陣的關係。

Posted in 線性代數專欄, 應用之道 | Tagged , , , , , , , , | 14 Comments