Tag Archives: Minkowski 不等式

賦範向量空間

本文的閱讀等級:中級 向量空間是一種代數結構,其中定義兩個運算:向量加法與純量乘法。令 為向量空間 的一組基底,意指 是一個線性獨立集,且每一個向量 可表示為 的線性組合 (見“基底與維數常見問答集”)。若基底是一個有限集,則 稱為有限維向量空間,否則稱為無限維向量空間。有限維向量空間比無限維向量空間容易分析,但有限維向量空間的概念與定理未必適用無限維向量空間。用一個例子說明。令 代表實序列 ,或記為 ,形成的無限維向量空間 (見“向量空間與實例”)。實序列空間 似乎是有限維向量空間 的直接推廣,實則不然。在 ,兩個序列 與 的加法定義為 ,純量 與序列 的乘法定義為 。套用有限維向量空間 的向量構造方式, , 其中 的第 元為 ,其餘元為 。表面上, 是所有 的「無限線性組合」構成的集合,但在一般情況下無窮多個向量之和未必是有意義的,譬如, 並不是一個收斂序列。如何才能使無窮多個向量之和具有意義呢?數學家想出一個方法:考慮無限多個向量 的部分和,,,並期待向量序列 收斂至某個向量 ,也就是說隨著 增大,序列 越來越接近 。要討論一個向量序列是否收斂的前提是我們須測量 與 之間的「距離」,或者說 … Continue reading

Posted in 希爾伯特空間 | Tagged , , , , | 8 Comments

向量範數

本文的閱讀等級:中級 線性代數的許多概念與主題衍生自歐幾里得幾何。典型的一個作法是將 和 的幾何觀念推廣至高維座標空間 和 。譬如,畢氏定理可用來計算二維實向量 和三維實向量 的長度: , 稱為歐氏範數 (Euclidean norm)。類似地, 維向量長度也有相同的算式。對於 , 。 上式中,我們以向量內積來表達 維實向量的歐氏範數。同樣道理, 維複向量的歐氏範數應該用複向量內積表達。對於 ,歐氏範數定義為 。 若 ,其中 和 是實數,,則 ,即有 。所以, 確保複向量的歐氏範數 不為負值。

Posted in 線性代數專欄, 內積空間 | Tagged , , , , , | 4 Comments