Tag Archives: PA=LU 分解

別再算逆矩陣了

本文的閱讀等級:初級 不知道從甚麼時候開始,“三階逆矩陣公式”經常雄踞本站「近期最多人點閱」表單的榜首,每日點閱該文的次數少則幾十,多則上百,下圖是過去一年以來的瀏覽次數統計 (主要的峰值所在的日期大致與台灣高等院校春秋二季期中和期末考試相吻合)。對於所見的逆矩陣風潮,我感到相當困惑:究竟出於甚麼樣的動機眾多年輕讀者願意不辭勞苦求算 (三階) 逆矩陣?如果尋覓逆矩陣公式的行動單純源於人類天生想要探索未知世界的好奇心,那我沒甚麼意見。不過,倘若只因為要解線性方程而計算逆矩陣,我可就忍不住要奉勸諸位:「省點力氣,別再算逆矩陣了!」

Posted in 線性代數專欄, 數值線性代數 | Tagged , , , , | 9 Comments

PA=LU 分解

本文的閱讀等級:中級 令 是一個 階可逆矩陣。LU 分解 是高斯消去法的一種表達形式,下三角矩陣 記錄消元過程使用的乘數,上三角矩陣 儲存約化結果,其中 和 的主對角元分別滿足 和 (見“LU 分解”)。不過,並非每一可逆矩陣都存在 LU 分解。在執行高斯消去法的化簡程序中,若 出現在軸元 (pivot) 位置,即 元,列取代運算便無法消去軸元底下各元,這時標準 LU 分解不復存在。可逆矩陣 的軸元總數 (即 ) 等於 ,透過列交換運算必能獲得一個 (非零) 軸元,所以仍可繼續下一階段的化簡步驟。從實際面來看,縱使未發生「零軸元」的情況 (軸元所在位置為零),為了避免因不當使用消去法而引發災難,部分軸元法 (partial pivoting) 也會適時地交換列 (見“特殊矩陣 (12):對角佔優矩陣”)。見下例 (取自[1]): 。 從 同時包含數值很小和很大的主對角元可知 不具數值穩定性,也就是說,標準 LU … Continue reading

Posted in 線性方程, 線性代數專欄 | Tagged , , , , | 9 Comments

LU 分解

本文的閱讀等級:初級 令 為一個 階矩陣。LU 分解是指將 表示為兩個 階三角矩陣的乘積 , 其中 是下三角矩陣, 是上三角矩陣,如下例, 。 LU 分解的本質是高斯消去法的一種表達形式,矩陣 記錄消去法化簡 的過程,而矩陣 則儲存化簡結果 (見“高斯消去法”)。LU 分解的外表看似平淡無奇,但它可以用來解線性方程,逆矩陣和計算行列式,堪稱是最具實用價值的矩陣分解式之一。

Posted in 線性方程, 線性代數專欄 | Tagged , , , , | 15 Comments

每週問題 March 8, 2010

本週問題是關於 LU 分解的演算法。貼上此題的用意是要介紹一個 PA=LU 算法,既容易手算也適合電腦程式,此算法並未出現於兩年前錄製的教學光碟中。 點選問題↓ Pow-March-8-10 參考解答↓ PowSol-March-8-10

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged , , | Leave a comment