搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 jeff85898 on 利用分塊矩陣證明 det(AB)=(det A)(det… 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: Rayleigh 商
每週問題 February 3, 2014
這是利用 Rayleigh 商判斷特徵值分布的問題。 Without computing the eigenvalues, decide how many are positive, negative, and zero for .
每週問題 January 20, 2014
這是關於一矩陣與其共軛轉置之和的特徵值問題。 Let be an matrix and . Let and be the largest eigenvalue and the smallest eigenvalue of , respectively. Show that every eigenvalue of satisfies .
廣義特徵值問題
本文的閱讀等級:高級 對於 階矩陣 ,一般特徵值問題欲解出 ,其中 是 的特徵值, 是對應的特徵向量。在一些工程和統計問題中,譬如,自由振動系統,譜聚類分析 (spectral clustering)[1],我們面對的是廣義特徵值 (generalized eigenvalue) 問題:,其中 和 是兩個 階 Hermitian 矩陣 (或實對稱矩陣), 稱為 和 的廣義特徵值, 是對應的廣義特徵向量[2]。在多數的應用場合, 是一正定矩陣。本文將推導自由振動系統的動態方程 (譜聚類分析較為複雜,他日另文介紹),證明優化廣義 Rayleigh 商 (quotient) 等價於廣義特徵值問題,並討論廣義特徵值與廣義特徵向量的性質與算法。
實對稱矩陣特徵值變化界定的典型問題
本文的閱讀等級:中級 線性代數所處理的最佳化問題可概分為兩大類:一是線性方程 的最小平方近似解問題,即求出 使得誤差平方 具有最小值。內積空間理論導出最佳解須滿足正規方程式 (normal equation) (見“ 從線性變換解釋最小平方近似”)。二是特徵分析推衍的二次型約束最佳化問題,即求單位向量 (unit vector) 使得 有最大值,其中 是實對稱矩陣。二次型 的極值產生條件是特徵方程式 ,極值大小則由 的特徵值決定 (見“二次型與正定矩陣”)。因為這個緣故,二次型約束最佳化也稱為實對稱矩陣的特徵值變化界定,下面我們討論兩個典型問題並說明完整的解法。 問題一 (取自 2012年台大資訊所碩士班入學試題):令 為實數,且 ,求 的最大值。
每週問題 July 18, 2011
這是推導正定矩陣的二次型最小化問題,取自 2011 年台聯大碩士班入學試題。 Pow-July-18-11 參考解答 PowSol-July-18-11
Courant-Fischer 定理的應用
本文的閱讀等級:高級 Courant-Fischer 定理是“Hermitian 矩陣特徵值的變化界定”一文的主要結果,此定理說明了如何利用最小-最大原則或最大-最小原則推得 Hermitian 矩陣的特徵值,所以也稱作最小-最大 (min-max) 定理。本文介紹 Courant-Fischer 定理的兩個應用:Weyl 定理與Cauchy 交錯特徵值定理。為方便參照,首先回顧 Courant-Fischer 定理。
Posted in 線性代數專欄, 二次型
Tagged Cauchy 交錯特徵值定理, Courant-Fischer 定理, 特徵值擾動, 譜半徑, Hermitian 矩陣, Rayleigh 商, Weyl 定理
Leave a comment
Hermitian 矩陣特徵值的變化界定
本文的閱讀等級:高級 在“二次型與正定矩陣”一文,我們曾經介紹對稱矩陣的特徵值與特徵向量於最佳化問題的用途,本文延續該文的討論並進一步將實對稱矩陣推廣至 Hermitian 矩陣 (請參閱背景文章“特殊矩陣 (9):Hermitian 矩陣”)。令 為一 階 Hermitian 矩陣。對於任一 ,二次型 必為實數。考慮這兩個實數集合: 很明顯,。另一方面,對於任意 ,令 ,則 而且 推論集合 中的任何元素也都屬於 ,所以 。集合 中的表示式 稱為 Rayleigh 商 (quotient),它與特徵方程式 有著密切的關係。因為 Hermitian 矩陣的特徵值皆為實數,我們可以假設 ,下面這個定理描述了 Rayleigh 商的範圍。