Due Wednesday, 11 March 2009 at 10:00 AM in EE207. Be sure to print your name and student ID on your homework.

1. Section 2.1, Problem 18

Find the matrix P that multiplies (x, y, z) to give (y, z, x). Find the matrix Q that multiplies (y, z, x) to bring back (x, y, z).
2. Section 2.1, Problem 20

What 3 by 3 matrix E multiplies (x, y, z) to give $(x, y, z+x)$? What matrix E^{-1} multiplies (x, y, z) to give $(x, y, z-x)$? If you multiply $(3,4,5)$ by E and then multiply E^{-1}, the two results are (\qquad) and \qquad).
3. Section 2.3, Problem 3

Which three matrices E_{21}, E_{31}, E_{32} put A into triangular form U ?

$$
A=\left[\begin{array}{rrr}
1 & 1 & 0 \\
4 & 6 & 1 \\
-2 & 2 & 0
\end{array}\right] \text { and } E_{32} E_{31} E_{21} A=U
$$

4. Let $\left[\begin{array}{cccc}a & 0 & b & 2 \\ a & a & 4 & 4 \\ 0 & a & 2 & b\end{array}\right]$ be the augmented matrix for a linear system. For what values
of a and b does the system have (a) a unique solution, (b) no solution, and (c) infinite many solutions?
5. Section 2.3, Problem 30

Find the triangular matrix E that reduces "Pascal's matrix" to a smaller Pascal:

$$
E\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right] .
$$

6. Section 2.4 , Problem 7 (Think of the 4 ways to multiply matrices.)

True or false. Give a specific example when false:
(a) If columns 1 and 3 of B are the same, so are columns 1 and 3 of $A B$.
(b) If rows 1 and 3 of B are the same, so are rows 1 and 3 of $A B$.
(c) If rows 1 and 3 of A are the same, so are rows 1 and 3 of $A B C$.
(d) $(A B)^{2}=A^{2} B^{2}$.
7. Section 2.4, Problem 11
(3 by 3 matrices) Choose the only B so that for every matrix A
(a) $B A=4 A$
(b) $B A=4 B$
(c) $B A$ has rows 1 and 3 of A reversed and row 2 unchanged.
(d) All rows of $B A$ are the same as row 1 of A.
8. Section 2.4, Problem 16 (Show every step of your proof.)

To prove that $(A B) C=A(B C)$, use the column vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ of B. First suppose that C has only one column \mathbf{c} with entries c_{1}, \ldots, c_{n} :
$A B$ has columns $A \mathbf{b}_{1}, \ldots, A \mathbf{b}_{n}$ and $B \mathbf{c}$ has one column $c_{1} \mathbf{b}_{1}+\ldots+c_{n} \mathbf{b}_{n}$.
Then $(A B) \mathbf{c}=c_{1} A \mathbf{b}_{1}+\ldots+c_{n} A \mathbf{b}_{n}$ equals $A\left(c_{1} \mathbf{b}_{1}+\ldots+c_{n} \mathbf{b}_{n}\right)=A(B \mathbf{c})$. Linearity gives equality of those two sums, and $(A B) \mathbf{c}=A(B \mathbf{c})$. The same is true for all other \qquad of C. Therefore $(A B) C=A(B C)$.
9. Without using Gaussian elimination, solve X by inspection. Identify the size of X first.
(a) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \\ 1 & 4 & 1\end{array}\right] X=\left[\begin{array}{lll}3 & 2 & 1 \\ 3 & 3 & 1 \\ 4 & 4 & 1 \\ 6 & 5 & 1\end{array}\right]$
(b) $X\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 1\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 3 & 3 \\ 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0\end{array}\right]$

10. Section 2.4, Problem 34

Suppose you are given three equations as below:

$$
A\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad A\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad A\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Solve $A \mathbf{x}=\mathbf{b}$ when $\mathbf{b}=(3,5,8)$. Challenge problem: What is A ?

