Linear Algebra Problem Set 10

Due Wednesday, 3 June 2009 at 10:00 AM in EE207. Be sure to print your name and student ID on your homework.

1. Section 6.2, Problem 10

Suppose each number G_{k+2} is the *average* of two previous numbers G_{k+1} and G_k .

Then
$$G_{k+2} = \frac{1}{2} (G_{k+1} + G_k)$$
:
 $G_{k+2} = \frac{1}{2} (G_{k+1} + G_k)$ is $\begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix} = A \begin{bmatrix} G_{k+1} \\ G_k \end{bmatrix}$.
 $G_{k+1} = G_{k+1}$

- (a) Find the eigenvalues and eigenvectors of A.
- (b) Find the limit as $n \to \infty$ of the matrix $A^n = S \Lambda^n S^{-1}$.
- (c) If $G_0 = 0$ and $G_1 = 1$ show that the Gibonacci numbers approach 2/3.
- 2. Section 6.3, Problem 5

A door is opened between rooms that hold v(0) = 30 people and w(0) = 10 people. The movement between rooms is proportional to the difference v - w:

$$\frac{dv}{dt} = w - v$$
 and $\frac{dw}{dt} = v - w$.

Show that the total is constant (40 people). Find the matrix in $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$ and its

eigenvalues and eigenvectors. What are v and w at t = 1?

- 3. When *A* is skew-symmetric ($A^T = -A$), $Q = e^{At}$ is orthogonal. Prove $Q^T = e^{-At}$ from the series for $Q = e^{At}$. Then $Q^TQ = I$.
- 4. If $A^2 = A$, show that $e^{At} = I + (e^t 1)A$. Use this result to compute e^{Bt} , where $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

5. Section 6.3, Problem 24

Give two reasons why the matrix exponential e^{At} is never singular:

- (a) Write down its inverse.
- (b) Write down its eigenvalues. If $A\mathbf{x} = \lambda \mathbf{x}$ then $e^{At}\mathbf{x} = \underline{\qquad} \mathbf{x}$.
- 6. Find an invertible matrix S and a matrix C of the form $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ such that the

given matrix has the form $A = \begin{bmatrix} 1 & 5 \\ -2 & 3 \end{bmatrix} = SCS^{-1}$.

7. Suppose a real 3 by 3 matrix A has eigenvalues -0.5, 0.2+0.3i, 0.2-0.3i, with

corresponding eigenvectors

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 1+2i \\ 4i \\ 2 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 1-2i \\ -4i \\ 2 \end{bmatrix}.$$

Write the general solution of $\mathbf{u}' = A\mathbf{u}$ using complex eigenvalues and eigenvectors, and then find the general *real* solution.

- 8. Suppose *A* is an *n* by *n* matrix. If **x** is in the nullspace of *A*, show that $M^{-1}\mathbf{x}$ is in the nullspace of $M^{-1}AM$. Is it true that dim $N(A) = \dim N(M^{-1}AM)$?
- 9. Section 6.6, Problem 19

If A is 6 by 4 and B is 4 by 6, AB and BA have different sizes. But still

$\left[I \right]$	-A	$\int AB$	0] [I]	A	0	0	-C
0	Ι	B	0_0	$I \rfloor^-$	B	BA	-0.

- (a) What sizes are the blocks of G? They are the same in each matrix.
- (b) This equation is $M^{-1}FM = G$, so F and G have the same 10 eigenvalues. F has eigenvalues of AB plus 4 zeros; G has the eigenvalues of BA plus 6 zeros. AB has the same eigenvalues as BA plus _____ zeros.
- 10. True or false, with a good reason:
 - (a) A can't be similar to A + I.
 - (b) If A is invertible and B is similar to A, then B is also invertible.
 - (c) If A is similar to B, then A^2 is similar to B^2 .
 - (d) If A^2 is similar to B^2 , then A is similar to B.
 - (e) If we exchange rows 1 and 2 of *A*, and then exchange columns 1 and 2, the eigenvalues stay the same.