Linear Algebra

Problem Set 10

Due Wednesday, 3 June 2009 at 10:00 AM in EE207. Be sure to print your name and student ID on your homework.

1. Section 6.2, Problem 10

Suppose each number G_{k+2} is the average of two previous numbers G_{k+1} and G_{k}.
Then $G_{k+2}=\frac{1}{2}\left(G_{k+1}+G_{k}\right)$:
$G_{k+2}=\frac{1}{2}\left(G_{k+1}+G_{k}\right) \quad$ is $\quad\left[\begin{array}{l}G_{k+2} \\ G_{k+1}\end{array}\right]=A\left[\begin{array}{c}G_{k+1} \\ G_{k}\end{array}\right]$.
(a) Find the eigenvalues and eigenvectors of A.
(b) Find the limit as $n \rightarrow \infty$ of the matrix $A^{n}=S \Lambda^{n} S^{-1}$.
(c) If $G_{0}=0$ and $G_{1}=1$ show that the Gibonacci numbers approach $2 / 3$.
2. Section 6.3, Problem 5

A door is opened between rooms that hold $v(0)=30$ people and $w(0)=10$ people.
The movement between rooms is proportional to the difference $v-w$:

$$
\frac{d v}{d t}=w-v \quad \text { and } \frac{d w}{d t}=v-w .
$$

Show that the total is constant (40 people). Find the matrix in $\frac{d \mathbf{u}}{d t}=A \mathbf{u}$ and its eigenvalues and eigenvectors. What are v and w at $t=1$?
3. When A is skew-symmetric $\left(A^{T}=-A\right), Q=e^{A t}$ is orthogonal. Prove $Q^{T}=e^{-A t}$ from the series for $Q=e^{A t}$. Then $Q^{T} Q=I$.
4. If $A^{2}=A$, show that $e^{A t}=I+\left(e^{t}-1\right) A$. Use this result to compute $e^{B t}$, where $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$.
5. Section 6.3, Problem 24

Give two reasons why the matrix exponential $e^{A t}$ is never singular:
(a) Write down its inverse.
(b) Write down its eigenvalues. If $A \mathbf{x}=\lambda \mathbf{x}$ then $e^{A t} \mathbf{x}=$ \qquad \mathbf{x}.
6. Find an invertible matrix S and a matrix C of the form $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ such that the given matrix has the form $A=\left[\begin{array}{rr}1 & 5 \\ -2 & 3\end{array}\right]=S C S^{-1}$.
7. Suppose a real 3 by 3 matrix A has eigenvalues $-0.5,0.2+0.3 i, 0.2-0.3 i$, with
corresponding eigenvectors

$$
\mathbf{x}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{r}
1+2 i \\
4 i \\
2
\end{array}\right], \quad \mathbf{x}_{3}=\left[\begin{array}{r}
1-2 i \\
-4 i \\
2
\end{array}\right] .
$$

Write the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ using complex eigenvalues and eigenvectors, and then find the general real solution.
8. Suppose A is an n by n matrix. If \mathbf{x} is in the nullspace of A, show that $M^{-1} \mathbf{x}$ is in the nullspace of $M^{-1} A M$. Is it true that $\operatorname{dim} N(A)=\operatorname{dim} N\left(M^{-1} A M\right)$?
9. Section 6.6, Problem 19

If A is 6 by 4 and B is 4 by $6, A B$ and $B A$ have different sizes. But still

$$
\left[\begin{array}{cc}
I & -A \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A B & 0 \\
B & 0
\end{array}\right]\left[\begin{array}{cc}
I & A \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
B & B A
\end{array}\right]=G .
$$

(a) What sizes are the blocks of G ? They are the same in each matrix.
(b) This equation is $M^{-1} F M=G$, so F and G have the same 10 eigenvalues. F has eigenvalues of $A B$ plus 4 zeros; G has the eigenvalues of $B A$ plus 6 zeros. $A B$ has the same eigenvalues as $B A$ plus \qquad zeros.
10. True or false, with a good reason:
(a) A can't be similar to $A+I$.
(b) If A is invertible and B is similar to A, then B is also invertible.
(c) If A is similar to B, then A^{2} is similar to B^{2}.
(d) If A^{2} is similar to B^{2}, then A is similar to B.
(e) If we exchange rows 1 and 2 of A, and then exchange columns 1 and 2 , the eigenvalues stay the same.

