Linear Algebra

Problem Set 11

1. Section 6.4, Problem 8

If $A^{3}=0$ then the eigenvalues of A must be \qquad Give an example that has
$A \neq 0$. But if A is symmetric, diagonalize it to prove that A must be zero.
2. Section 6.4, Problem 16

Even if A is rectangular, the block matrix $B=\left[\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right]$ is symmetric:

$$
B \mathbf{x}=\lambda \mathbf{x} \quad \text { is } \quad\left[\begin{array}{cc}
0 & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{z}
\end{array}\right]=\lambda\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{z}
\end{array}\right] \text { which is } \begin{aligned}
& A \mathbf{z}=\lambda \mathbf{y} \\
& A^{T} \mathbf{y}=\lambda \mathbf{z} .
\end{aligned}
$$

(a) Show that $-\lambda$ is also eigenvalue, with the eigenvector $(\mathbf{y},-\mathbf{z})$.
(b) Show that $A^{T} A \mathbf{z}=\lambda^{2} \mathbf{z}$, so that λ^{2} is an eigenvalue of $A^{T} A$.
(c) If $A=I$ (2 by 2) find all four eigenvalues and eigenvectors of B.
3. Section 6.4, Problem 22

A normal matrix has $A^{T} A=A A^{T}$; it has orthogonal eigenvectors. Why is every skew-symmetric matrix normal? Why is every orthogonal matrix normal? When is $\left[\begin{array}{cc}a & 1 \\ -1 & d\end{array}\right]$ normal?
4. Section 6.4, Problem 24

Which of these classes of matrices do A and B belong to: Invertible, orthogonal, projection, permutation, diagonalizable?

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad B=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] .
$$

Which of these factorizations are possible for A and $B: L U, Q R, S \Lambda S^{-1}, Q \Lambda Q^{T}$?
5. Section 6.4, Problem 26

Find all 2 by 2 matrices that are orthogonal and also symmetric. Which two numbers can be eigenvalues?
6. Section 6.5 , Problem 24

Draw the tilted ellipse $x^{2}+x y+y^{2}=1$ and find the half-lengths of its axes from the eigenvalues of the corresponding A.
7. Section 6.5, Problem 2

For which numbers b and c are these matrices positive definite?

$$
A=\left[\begin{array}{ll}
1 & b \\
b & 9
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
2 & 4 \\
4 & c
\end{array}\right] .
$$

With the pivots in D and multiplier in L, factor A into $L D L^{T}$.
8. Section 6.5, Problem 20

Give a quick reason why each of these statements is true:
(a) Every positive definite matrix is invertible.
(b) The only positive definite projection matrix is $P=I$.
(c) A diagonal matrix with positive diagonal entries is positive definite.
(d) A symmetric matrix with a positive determinant might not be positive definite!
9. Section 6.5, Problem 25

With positive pivots in D, the factorization $A=L D L^{T}$ becomes $L \sqrt{D} \sqrt{D} L^{T}$.
(Square roots of the pivots give $D=\sqrt{D} \sqrt{D}$.) Then $C=L \sqrt{D}$ yields the Cholesky factorization $A=C C^{T}$ which is "symmetrized $L U$ ":

$$
\text { From } C=\left[\begin{array}{ll}
3 & 0 \\
1 & 2
\end{array}\right] \text { find } A . \quad \text { From } A=\left[\begin{array}{cc}
4 & 8 \\
8 & 25
\end{array}\right] \text { find } C .
$$

10. Section 6.5, Problem 28

Without multiplying

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

find
(a) the determinant of A
(b) the eigenvalues of A
(c) the eigenvectors of A
(d) a reason why A is symmetric positive definite.

