Linear Algebra Problem Set 11

1. Section 6.4, Problem 8

If $A^3 = 0$ then the eigenvalues of A must be _____. Give an example that has $A \neq 0$. But if A is symmetric, diagonalize it to prove that A must be zero.

2. Section 6.4, Problem 16

Even if A is rectangular, the block matrix
$$B = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$$
 is symmetric:
 $B\mathbf{x} = \lambda \mathbf{x}$ is $\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \lambda \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix}$ which is $\begin{bmatrix} A\mathbf{z} = \lambda \mathbf{y} \\ A^T \mathbf{y} = \lambda \mathbf{z}.$

- (a) Show that $-\lambda$ is also eigenvalue, with the eigenvector $(\mathbf{y}, -\mathbf{z})$.
- (b) Show that $A^T A \mathbf{z} = \lambda^2 \mathbf{z}$, so that λ^2 is an eigenvalue of $A^T A$.
- (c) If A = I (2 by 2) find all four eigenvalues and eigenvectors of B.
- 3. Section 6.4, Problem 22

A normal matrix has $A^{T}A = AA^{T}$; it has orthogonal eigenvectors. Why is every skew-symmetric matrix normal? Why is every orthogonal matrix normal? When is

$$\begin{bmatrix} a & 1 \\ -1 & d \end{bmatrix} \text{normal?}$$

4. Section 6.4, Problem 24

Which of these classes of matrices do *A* and *B* belong to: Invertible, orthogonal, projection, permutation, diagonalizable?

	0	0	1	1	1	1
A =	0	1	0	$B = \frac{1}{2} 1$	1	1.
	1	0	0	$\left 1 \right ^{3}$	1	1

Which of these factorizations are possible for A and B: LU, QR, $S\Lambda S^{-1}$, $Q\Lambda Q^{T}$?

5. Section 6.4, Problem 26

Find all 2 by 2 matrices that are orthogonal and also symmetric. Which two numbers can be eigenvalues?

- 6. Section 6.5, Problem 24 Draw the tilted ellipse $x^2 + xy + y^2 = 1$ and find the half-lengths of its axes from the eigenvalues of the corresponding *A*.
- 7. Section 6.5, Problem 2

For which numbers *b* and *c* are these matrices positive definite?

$$A = \begin{bmatrix} 1 & b \\ b & 9 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 2 & 4 \\ 4 & c \end{bmatrix}.$$

With the pivots in D and multiplier in L, factor A into LDL^{T} .

8. Section 6.5, Problem 20

Give a quick reason why each of these statements is true:

- (a) Every positive definite matrix is invertible.
- (b) The only positive definite projection matrix is P = I.
- (c) A diagonal matrix with positive diagonal entries is positive definite.
- (d) A symmetric matrix with a positive determinant might not be positive definite!
- 9. Section 6.5, Problem 25

With positive pivots in *D*, the factorization $A = LDL^T$ becomes $L\sqrt{D}\sqrt{D}L^T$. (Square roots of the pivots give $D = \sqrt{D}\sqrt{D}$.) Then $C = L\sqrt{D}$ yields the Cholesky factorization $A = CC^T$ which is "symmetrized *LU*":

From
$$C = \begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix}$$
 find A. From $A = \begin{bmatrix} 4 & 8 \\ 8 & 25 \end{bmatrix}$ find C.

10. Section 6.5, Problem 28

Without multiplying

$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix},$$

find

- (a) the determinant of A
- (b) the eigenvalues of A
- (c) the eigenvectors of A
- (d) a reason why A is symmetric positive definite.