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Linear Algebra         

Problem Set 11                         2009 

 

1. Section 6.4, Problem 8 

If A
3
 = 0 then the eigenvalues of A must be ________. Give an example that has 

0.A ≠  But if A is symmetric, diagonalize it to prove that A must be zero.  

2. Section 6.4, Problem 16 

Even if A is rectangular, the block matrix
0
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(a) Show that λ−  is also eigenvalue, with the eigenvector ( , ).−y z  

(b) Show that 2 ,T
A A λ=z z  so that 2

λ  is an eigenvalue of .T
A A  

(c) If A = I ( 2 by 2) find all four eigenvalues and eigenvectors of B.  

3. Section 6.4, Problem 22 

A normal matrix has ;T T
A A AA= it has orthogonal eigenvectors. Why is every 

skew-symmetric matrix normal? Why is every orthogonal matrix normal? When is 
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normal?  

4. Section 6.4, Problem 24 

Which of these classes of matrices do A and B belong to: Invertible, orthogonal, 

projection, permutation, diagonalizable?  
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Which of these factorizations are possible for A and B: LU, QR, 1, ?T
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5. Section 6.4, Problem 26 

Find all 2 by 2 matrices that are orthogonal and also symmetric. Which two 

numbers can be eigenvalues? 

6. Section 6.5, Problem 24 

Draw the tilted ellipse x
2 
+ xy + y

2
 = 1 and find the half-lengths of its axes from 

the eigenvalues of the corresponding A.  

7. Section 6.5, Problem 2 

For which numbers b and c are these matrices positive definite?  
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With the pivots in D and multiplier in L, factor A into LDL
T
. 
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8. Section 6.5, Problem 20 

Give a quick reason why each of these statements is true: 

(a) Every positive definite matrix is invertible.  

(b) The only positive definite projection matrix is P = I.  

(c) A diagonal matrix with positive diagonal entries is positive definite. 

(d) A symmetric matrix with a positive determinant might not be positive 

definite! 

9. Section 6.5, Problem 25 

With positive pivots in D, the factorization A = LDL
T
 becomes .TL D DL  

(Square roots of the pivots give .D D D= ) ThenC L D= yields the Cholesky 

factorization A = CC
T
 which is “symmetrized LU”: 

From
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 find A.   From
4 8

8 25
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 find C. 

10. Section 6.5, Problem 28 

Without multiplying  

cos sin 2 0 cos sin
,

sin cos 0 5 sin cos
A
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θ θ θ θ
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find  

(a) the determinant of A   

(b) the eigenvalues of A  

(c) the eigenvectors of A 

(d) a reason why A is symmetric positive definite.  

 

 


