Linear Algebra

Problem Set 2

Due Wednesday, 18 March 2009 at 10:00 AM in EE207. Be sure to print your name and student ID on your homework.

1. Section 2.5 , Problem 7

If A has row $1+$ row 2 row 3 , show that A is not invertible:
(a) Explain why $A \mathbf{x}=(1,0,0)$ cannot have a solution.
(b) Which right sides $\left(b_{1}, b_{2}, b_{3}\right)$ might allow a solution to $A \mathbf{x}=\mathbf{b}$?
(c) What happen to row 3 in elimination?
2. Section 2.5 , Problem 10

Find the inverses (in any legal way) of

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 2 \\
0 & 0 & 3 & 0 \\
0 & 4 & 0 & 0 \\
5 & 0 & 0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{llll}
3 & 2 & 0 & 0 \\
4 & 3 & 0 & 0 \\
0 & 0 & 6 & 5 \\
0 & 0 & 7 & 6
\end{array}\right] .
$$

(Actually, you don't need to use Gauss-Jordan method. Find the inverses by inspection.)
3. Section 2.5 , Problem 32

The matrix has a remarkable inverse. Find A^{-1} by elimination on $\left[\begin{array}{ll}A & I\end{array}\right]$.
Extend to a 5 by 5 "alternating matrix" and guess its inverse; then multiply to confirm.

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

4. Suppose that A is n by n, U is n by m, and V is m by n. By direct multiplication, prove that if $A=I_{n}-U V$, then

$$
A^{-1}=I_{n}+U\left(I_{m}-V U\right)^{-1} V .
$$

5. Suppose the matrix $\left[\begin{array}{ccccc}1 & 2 & 3 & 1 & b \\ 2 & 5 & 3 & a & 0 \\ 1 & 0 & 8 & 6 & c\end{array}\right]$ can be transformed to

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & d & -1 \\
0 & 0 & 1 & 1 & e
\end{array}\right] \text { with a series of row operations. Find } a, b, c, d \text {, and } e
$$

6. Suppose $B=(I+A)^{-1}(I-A)$ and $A=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & -4 & 5 & 0 \\ 0 & 0 & -6 & 7\end{array}\right]$. Find $(I+B)^{-1}$.
(Please don't do a lot of calculations! Try removing $(I+A)^{-1}$ from the equation first.)
7. Section 2.6, Problem 13

Compute L and U for the symmetric matrix

$$
A=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]
$$

Find four conditions on a, b, c, d to get $A=L U$ with four pivots.
8. Section 2.6, Problem 18

If $A=L D U$ and also $A=L_{1} D_{1} U_{1}$ with all factors invertible, then $L=L_{1}$ and $D=D_{1}$ and $U=U_{1}$. The factors are unique.
(a) Derive the equation $L_{1}^{-1} L D=D_{1} U_{1} U^{-1}$. Are the two sides triangular or diagonal?
(b) Deduce $L=L_{1}$ and $U=U_{1}$ (they all have diagonal 1's). Then $D=D_{1}$.
9. Section 2.7, Problem 18
(a) How many entries of A can be chosen independently, if $A=A^{T}$ is 5 by 5 ?
(b) How do L and D (still 5 by 5) give the same number of choices?
(c) How many entries can be chosen if A is skew-symmetric? $\left(A^{T}=-A\right)$.
10. Solve X given that

$$
X\left[\begin{array}{rrr}
-1 & 0 & 1 \\
1 & 1 & 0 \\
3 & 1 & -1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 2 & 0 \\
-3 & 1 & 5
\end{array}\right]
$$

