Linear Algebra Problem Set 2

Due Wednesday, 18 March 2009 at 10:00 AM in EE207. Be sure to print your name and student ID on your homework.

1. Section 2.5, Problem 7

If *A* has row 1 + row 2 = row 3, show that *A* is not invertible:

- (a) Explain why $A\mathbf{x}=(1,0,0)$ cannot have a solution.
- (b) Which right sides (b_1, b_2, b_3) might allow a solution to $A\mathbf{x}=\mathbf{b}$?
- (c) What happen to row 3 in elimination?
- 2. Section 2.5, Problem 10

Find the inverses (in any legal way) of

A =	0	0	0	2		3	2	0	0	
	0	0	3	0	and $B =$	4	3	0	0	
	0	4	0	0	and D =	0	0	6	5	
	5	0	0	0						

(Actually, you don't need to use Gauss-Jordan method. Find the inverses by inspection.)

3. Section 2.5, Problem 32

The matrix has a remarkable inverse. Find A^{-1} by elimination on $\begin{bmatrix} A & I \end{bmatrix}$.

Extend to a 5 by 5 "alternating matrix" and guess its inverse; then multiply to confirm.

$$A = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

4. Suppose that *A* is *n* by *n*, *U* is *n* by *m*, and *V* is *m* by *n*. By direct multiplication, prove that if $A = I_n - UV$, then

$$A^{-1} = I_n + U(I_m - VU)^{-1}V.$$

5. Suppose the matrix $\begin{bmatrix} 1 & 2 & 3 & 1 & b \\ 2 & 5 & 3 & a & 0 \\ 1 & 0 & 8 & 6 & c \end{bmatrix}$ can be transformed to

 $\begin{bmatrix} 1 & 0 & 0 & -2 & 0 \\ 0 & 1 & 0 & d & -1 \\ 0 & 0 & 1 & 1 & e \end{bmatrix}$ with a series of row operations. Find *a*, *b*, *c*, *d*, and *e*.

6. Suppose
$$B = (I+A)^{-1}(I-A)$$
 and $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & -4 & 5 & 0 \\ 0 & 0 & -6 & 7 \end{bmatrix}$. Find $(I+B)^{-1}$.

(Please don't do a lot of calculations! Try removing $(I + A)^{-1}$ from the equation first.)

7. Section 2.6, Problem 13

Compute *L* and *U* for the symmetric matrix

$$A = \begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix}.$$

Find four conditions on *a*, *b*, *c*, *d* to get *A*=*LU* with four pivots.

8. Section 2.6, Problem 18

If A = LDU and also $A = L_1D_1U_1$ with all factors invertible, then $L=L_1$ and $D=D_1$ and $U=U_1$. The factors are unique.

(a) Derive the equation $L_1^{-1}LD = D_1U_1U^{-1}$. Are the two sides triangular or

diagonal?

- (b) Deduce $L=L_1$ and $U=U_1$ (they all have diagonal 1's). Then $D=D_1$.
- 9. Section 2.7, Problem 18
 - (a) How many entries of A can be chosen independently, if $A=A^{T}$ is 5 by 5?
 - (b) How do L and D (still 5 by 5) give the same number of choices?
 - (c) How many entries can be chosen if A is *skew-symmetric*? $(A^{T} = -A)$.
- 10. Solve *X* given that

$$X\begin{bmatrix} -1 & 0 & 1\\ 1 & 1 & 0\\ 3 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0\\ -3 & 1 & 5 \end{bmatrix}.$$