
 1 

Linear Algebra         

Problem Set 4                          2009 

 

Due Monday, 6 April 2009 at 12:00 AM in EE207. Be sure to print your name and 

student ID on your homework.  

 

1. Section 3.4, Problem 1 

Execute the six steps of Worked Example 3.4 A to describe the column space and 

nullspace of A and the complete solution to Ax = b: 
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2. Section 3.4, Problem 10 

Construct a 2 by 3 system Ax = b with particular solution xp = (2, 4, 0) and 

homogeneous solution xn = any multiple of (1, 1, 1). 

3. Give an example of a matrix A with the least number of rows and a nonzero vector 

b such that the solutions of Ax = b form a line in R
3
, and all the entries of the 

matrix A are nonzero. Also find all solutions x.  

4. Section 3.5, Problem 2 

Find the largest possible number of independent vectors among 
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5. Suppose the rows of an m by n matrix A are linearly independent. 

(a) What is the relation of m and n?  

(b) Is Ax = b always consistent (solvable) for any b in R
m
?  

(c) If Ax = b is solvable, is the solution necessarily unique?  

(d) What are the column space of A and the nullspace of A
T
?  

6. Section 3.5, Problem 24  

U comes from A by subtracting row 1 from row 3: 
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Find bases for the two column spaces. Find bases for the two row spaces. Find 

bases for the two nullspaces. 
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7. Section 3.6, Problem 4 

Construct a matrix with the required property or explain why this is impossible. 
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(b) Column space has basis

1

1 ,

3

 
 
 
  

nullspace has basis

3

1 .

1

 
 
 
  

 

(c) Dimension of nullspace = 1+ dimension of left nullspace. 

(d) Left nullspace contains
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(e) Row space = column space, nullspace≠left nullspace. 

8. Section 3.6, Problem 11 

A is an m by n matrix of rank r. Suppose there are right sides b for which Ax = b 

has no solution.  

(a) What are all inequalities (< or ≦) that must be true between m, n, and r?  

(b) How do you know that A
T
y = 0 has solutions other than y = 0?  

9. Suppose A is a 3 by 2 matrix, and B is a 2 by 5 matrix. How many possible 

dimensions of the nullspace of AB are there? 

10. Section 3.6, Problem 23 

Without multiplying matrices, find bases for the row and column spaces of A:  
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How do you know from these shapes that A is not invertible?  


