## Linear Algebra

Problem Set 4

Due Monday, 6 April 2009 at 12:00 AM in EE207. Be sure to print your name and student ID on your homework.

1. Section 3.4, Problem 1

Execute the six steps of Worked Example 3.4 A to describe the column space and nullspace of $A$ and the complete solution to $A \mathbf{x}=\mathbf{b}$ :

$$
A=\left[\begin{array}{llll}
2 & 4 & 6 & 4 \\
2 & 5 & 7 & 6 \\
2 & 3 & 5 & 2
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
5
\end{array}\right] .
$$

2. Section 3.4, Problem 10

Construct a 2 by 3 system $A \mathbf{x}=\mathbf{b}$ with particular solution $\mathbf{x}_{p}=(2,4,0)$ and homogeneous solution $\mathbf{x}_{n}=$ any multiple of $(1,1,1)$.
3. Give an example of a matrix $A$ with the least number of rows and a nonzero vector $\mathbf{b}$ such that the solutions of $A \mathbf{x}=\mathbf{b}$ form a line in $\mathbf{R}^{3}$, and all the entries of the matrix $A$ are nonzero. Also find all solutions $\mathbf{x}$.
4. Section 3.5, Problem 2

Find the largest possible number of independent vectors among

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right] \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right] \mathbf{v}_{3}=\left[\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right] \mathbf{v}_{4}=\left[\begin{array}{r}
0 \\
1 \\
-1 \\
0
\end{array}\right] \mathbf{v}_{5}=\left[\begin{array}{r}
0 \\
1 \\
0 \\
-1
\end{array}\right] \mathbf{v}_{6}=\left[\begin{array}{r}
0 \\
0 \\
1 \\
-1
\end{array}\right] .
$$

5. Suppose the rows of an $m$ by $n$ matrix $A$ are linearly independent.
(a) What is the relation of $m$ and $n$ ?
(b) Is $A \mathbf{x}=\mathbf{b}$ always consistent (solvable) for any $\mathbf{b}$ in $\mathbf{R}^{m}$ ?
(c) If $A \mathbf{x}=\mathbf{b}$ is solvable, is the solution necessarily unique?
(d) What are the column space of $A$ and the nullspace of $A^{T}$ ?
6. Section 3.5, Problem 24
$U$ comes from $A$ by subtracting row 1 from row 3:

$$
A=\left[\begin{array}{lll}
1 & 3 & 2 \\
0 & 1 & 1 \\
1 & 3 & 2
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Find bases for the two column spaces. Find bases for the two row spaces. Find bases for the two nullspaces.
7. Section 3.6, Problem 4

Construct a matrix with the required property or explain why this is impossible.
(a) Column space contains $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$,row space contains $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right]$.
(b) Column space has basis $\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$, nullspace has basis $\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$.
(c) Dimension of nullspace $=1+$ dimension of left nullspace.
(d) Left nullspace contains $\left[\begin{array}{l}1 \\ 3\end{array}\right]$, row space contains $\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
(e) Row space $=$ column space, nullspace $\neq$ left nullspace.
8. Section 3.6, Problem 11
$A$ is an $m$ by $n$ matrix of rank $r$. Suppose there are right $\operatorname{sides} \mathbf{b}$ for which $A \mathbf{x}=\mathbf{b}$ has no solution.
(a) What are all inequalities ( $<$ or $\leqq$ ) that must be true between $m, n$, and $r$ ?
(b) How do you know that $A^{T} \mathbf{y}=\mathbf{0}$ has solutions other than $\mathbf{y}=\mathbf{0}$ ?
9. Suppose $A$ is a 3 by 2 matrix, and $B$ is a 2 by 5 matrix. How many possible dimensions of the nullspace of $A B$ are there?
10. Section 3.6, Problem 23

Without multiplying matrices, find bases for the row and column spaces of $A$ :

$$
A=\left[\begin{array}{ll}
1 & 2 \\
4 & 5 \\
2 & 7
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 3 \\
1 & 1 & 2
\end{array}\right] .
$$

How do you know from these shapes that $A$ is not invertible?

