## Linear Algebra

Problem Set 5

Due Wednesday, 22 April 2009 at 12:00 AM in EE207. Be sure to print your name and student ID on your homework.

1. Section 7.1, Problem 6

Which of these transformations satisfy $T(\mathbf{v}+\mathbf{w})=T(\mathbf{v})+T(\mathbf{w})$ and which satisfy
$T(c \mathbf{v})=c T(\mathbf{v})$ ?
(a) $T(\mathbf{v})=\mathbf{v} /\|\mathbf{v}\|$
(b) $T(\mathbf{v})=v_{1}+v_{2}+v_{3}$
(c) $T(\mathbf{v})=\left(v_{1}, 2 v_{2}, 3 v_{3}\right)$
(d) $T(\mathbf{v})=$ largest component of $\mathbf{v}$.
2. An affine transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ has the form $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$, with $A$ an $m$ by $n$ matrix and $\mathbf{b}$ in $\mathbf{R}^{m}$. Show that $T$ is not a linear transformation when $\mathbf{b} \neq \mathbf{0}$.
3. Section 7.1, Problem 10

A linear transformation from $\mathbf{V}$ to $\mathbf{W}$ has an inverse from $\mathbf{W}$ to $\mathbf{V}$ when the range is all of $\mathbf{W}$ and the kernel contains only $\mathbf{v}=\mathbf{0}$. Why are these transformations not invertible?
(a) $T\left(v_{1}, v_{2}\right)=\left(v_{2}, v_{2}\right)$
$\mathbf{W}=\mathbf{R}^{2}$
(b) $T\left(v_{1}, v_{2}\right)=\left(v_{1}, v_{2}, v_{1}+v_{2}\right)$
$\mathbf{W}=\mathbf{R}^{3}$
(c) $T\left(v_{1}, v_{2}\right)=v_{1}$
$\mathbf{W}=\mathbf{R}^{1}$
4. Section 7.1, Problem 17

The transformation $T$ that transposes every matrix is definitely linear. Which of these extra properties are true?
(a) $T^{2}=$ identity transformation. $\left(T^{2}(M)=T(T(M))\right)$
(b) The kernel of $T$ is the zero matrix.
(c) Every matrix is in the range of $T$.
(d) $T(M)=-M$ is impossible.
5. Section 7.1, Problem 18

Suppose $T(M)=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right][M]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Find a matrix with $T(M) \neq 0$. Describe all matrices with $T(M)=0$ (the kernel of $T$ ) and all output matrices $T(M)$ (the range of $T$ ).
6. A linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ first reflects points through the $x$-axis and then reflects points through the $y$-axis. Show that $T$ can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation?
7. Suppose $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a linear transformation.
(a) If $T$ map $\mathbf{R}^{n}$ onto $\mathbf{R}^{m}$, what is the relationship between $m$ and $n$ ?
(b) If $T$ is one-to-one, what can you say about $m$ and $n$ ?
8. Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{4}, T\left(\mathbf{e}_{1}\right)=(1,2,3,4)$ and $T\left(\mathbf{e}_{2}\right)=(5,5,0,0)$, where $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$. Find the standard matrix $A$ of $T$, i.e., $T(\mathbf{x})=A \mathbf{x}$. Also, find $T(\mathbf{x})$, where $\mathbf{x}=(2,-3)$.
9. Let $\mathbf{w}_{1}=\left[\begin{array}{r}1 \\ -2\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{x}=\left[\begin{array}{r}5 \\ -4\end{array}\right]$, and $B=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$. Find the coordinate vector $[\mathbf{x}]_{B}$ of $\mathbf{x}$ with respect to basis $B$. Find $\mathbf{y}$ such that $[\mathbf{y}]_{B}=(2,4)$. What is the change-of-coordinate matrix from $B$ to the standard basis in $\mathbf{R}^{2}$ ?
10. Use coordinate vectors to verify that the polynomials $1+2 t^{2}, 4+t+5 t^{2}$, and $3+2 t$ are linearly dependent in $\mathbf{P}^{2}$. (Identify the coordinate vectors of these polynomials relative to the standard basis, and then show that these vectors are linear dependent.)

