Linear Algebra

Problem Set 6

Due Wednesday, 29 April 2009 at 10:00 AM in EE207. Be sure to print your name and student ID on your homework.

1. Suppose T is a linear transformation from \mathbf{R}^{3} to \mathbf{R}^{3} and

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right], T\left(\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]\right)=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right] .
$$

(a) Find the matrix of the linear transformation with respect to the standard basis.
(b) Find the matrix of the linear transformation with respect to the following basis:

$$
B=\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]\right\} .
$$

2. Suppose L is a linear transformation from \mathbf{P}^{2} to \mathbf{P}^{3}, described by

$$
L(f(x))=x f(x)+f^{\prime}(x) .
$$

Find a basis for the range of L. (The basis you choose can be represented as a set of coordinate vectors with respect to the standard basis $\left\{1, x, x^{2}, \mathrm{x}^{3}\right\}$.)
3. An affine transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ has the form $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$, with A an 2 by 2 matrix and \mathbf{b} in \mathbf{R}^{2}. If T is invertible, show the following statements:
(a) $T^{-1}(\mathbf{x})=A^{-1} \mathbf{x}-A^{-1} \mathbf{b}$.
(b) Affine transformations map parallel straight lines to parallel straight lines.
4. Let L be the linear transformation that rotates vectors in \mathbf{R}^{2} by 45° in the counterclockwise direction. Will it be possible to find a basis B so that the matrix of L with respect to B is the identity matrix, i.e., $[L]_{B}=I$?
5. Let $\mathbf{b}_{1}=\left[\begin{array}{r}1 \\ -3\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}-2 \\ 4\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{r}-7 \\ 9\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{r}-5 \\ 7\end{array}\right]$, and consider the bases for \mathbf{R}^{2} given by $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $C=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$.
(a) Find the change-of-coordinates matrix M from B to C. Note that $[\mathbf{v}]_{C}=M$ $[\mathbf{v}]_{B}$, where $[\mathbf{v}]_{C}$ denotes coordinate vector of \mathbf{v} with respect to basis C.
(b) Suppose the matrix of the linear transformation T with respect to basis B is

$$
[T]_{B}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] . \text { What is the matrix of } T \text { with respect to basis } C \text { ? }
$$

6. Section 4.1, Problem 17

If S is the subspace of \mathbf{R}^{3} containing only the zero vector, what is S^{\perp} ? If S is
spanned by $(1,1,1)$, what is S^{\perp} ? If S is spanned by $(2,0,0)$ and $(0,0,3)$, what is S^{\perp} ?
7. Section 4.1, Problem 28

Why is each of these statements false?
(a) $(1,1,1)$ is perpendicular to $(1,1,-2)$ so the planes $x+y+z=0$ and $x+y-2 z=0$ are orthogonal subspaces.
(b) The subspace spanned by $(1,1,0,0,0)$ and $(0,0,0,1,1)$ is the orthogonal complement of the subspaces spanned by $(1,-1,0,0,0)$ and ($2,-2,3,4,-4$).
(c) If two subspaces meet only in the zero vector, the subspaces are orthogonal.
8. Section 4.1, Problem 30

Suppose A is 3 by 4 and B is 4 by 5 and $A B=0$. Prove that $\operatorname{rank}(A)+\operatorname{rank}(B) \leqq 4$.
9. Section 4.2, Problem 13

Suppose A is the 4 by 4 identity matrix with its last column removed. A is 4 by 3 . Project $\mathbf{b}=(1,2,3,4)$ onto the column space of A. What shape is the projection matrix P and what is P ?
10. Section 4.2, Problem 19

To find the projection matrix onto the plane $x-y-2 z=0$, choose two vectors in that plane and make them the columns of A. The plane should be the column space. Then compute $P=A\left(A^{T} A\right)^{-1} A^{T}$.

