Linear Algebra

Problem Set 7

Due Wednesday, 6 May 2009 at 10:00 AM in EE207. Be sure to print your name and student ID on your homework.

1. Suppose L is the line $a x+b y=0$, and $P=(x, y)$ is a point on the $x y$-plane. If $Q=\left(x_{1}, y_{1}\right)$ is the foot of the perpendicular from P to L, find a 2 by 2 matrix A such that

$$
\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=A\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

2. Suppose W is the subspace spanned by $\left[\begin{array}{r}1 \\ 3 \\ -2\end{array}\right],\left[\begin{array}{l}5 \\ 1 \\ 4\end{array}\right]$. Find the point in W that is
closest to $\left[\begin{array}{r}4 \\ -2 \\ -3\end{array}\right]$.
3. Section 4.3, Problem 1

With $b=0,8,8,20$ at $t=0,1,3,4$, set up and solve the normal equations
$A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. For the best straight line in figure 4.9a, find its four heights p_{i} and four errors e_{i}. What is the minimum value $E=e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}$?
4. Section 4.3, Problem 17

Write down three equations for the line $b=C+D t$ to go through $b=7$ at $t=-1, b$ $=7$ at $t=1$, and $b=21$ at $t=2$. Find the least squares solution $\hat{\mathbf{x}}=(C, D)$ and draw the closest line.
5. Section 4.4, Problem 4

Give an example of each of the following:
(a) A matrix Q that has orthonormal columns but $Q Q^{T} \neq I$.
(b) Two orthogonal vectors that are not linearly independent.
(c) An orthonormal basis for \mathbf{R}^{4}, where every component is $\frac{1}{2}$ or $-\frac{1}{2}$.
6. Suppose $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$. Find the solution of $A \mathbf{x}=\mathbf{b}$ and \mathbf{x} has the minimum length $\|\mathbf{x}\|$. Is such an \mathbf{x} always in the row space of A ?
7. Section 4.4, Problem 15
(a) Find orthonormal vectors $\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}$ such that $\mathbf{q}_{1}, \mathbf{q}_{2}$ span the column space of

$$
A=\left[\begin{array}{rr}
1 & 1 \\
2 & -1 \\
-2 & 4
\end{array}\right] .
$$

(b) Which of the four fundamental subspaces contains \mathbf{q}_{3} ?
(c) Solve $A \mathbf{x}=(1,2,7)$ by least squares.
8. Section 4.4, Problem 23

Find $\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}$ (orthonormal) as combinations of $\mathbf{a}, \mathbf{b}, \mathbf{c}$ (independent columns of A). Then write A as $Q R$:

$$
A=\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 0 & 5 \\
0 & 3 & 6
\end{array}\right]
$$

9. Section 4.4, Problem 24
(a) Find a basis for the subspace S in \mathbf{R}^{4} spanned by all solutions of

$$
x_{1}+x_{2}+x_{3}-x_{4}=0 .
$$

(b) Find a basis for the orthogonal complement S^{\perp}.
(c) Find \mathbf{b}_{1} in S and \mathbf{b}_{2} in S^{\perp} so that $\mathbf{b}_{1}+\mathbf{b}_{2}=\mathbf{b}=(1,1,1,1)$.
10. Section 4.4, Problem 34
$Q=I-2 \mathbf{u u}^{T}$ is a reflection matrix when $\mathbf{u}^{T} \mathbf{u}=1$.
(a) Show that $Q \mathbf{u}=-\mathbf{u}$. The mirror is perpendicular to \mathbf{u}.
(b) Find $Q \mathbf{v}$ when $\mathbf{u}^{T} \mathbf{v}=0$. The mirror contains \mathbf{v}. It reflects to itself.

