Linear Algebra Problem Set 7

Due Wednesday, 6 May 2009 at 10:00 AM in EE207. Be sure to print your name and student ID on your homework.

1. Suppose *L* is the line ax+by=0, and P=(x, y) is a point on the *xy*-plane. If $Q=(x_1, y_1)$ is the foot of the perpendicular from *P* to *L*, find a 2 by 2 matrix *A* such that

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix}.$$

2. Suppose W is the subspace spanned by $\begin{bmatrix} 1\\3\\-2 \end{bmatrix}$, $\begin{bmatrix} 5\\1\\4 \end{bmatrix}$. Find the point in W that is

closest to
$$\begin{bmatrix} 4\\-2\\-3 \end{bmatrix}$$
.

3. Section 4.3, Problem 1

With b = 0, 8, 8, 20 at t = 0, 1, 3, 4, set up and solve the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. For the best straight line in figure 4.9a, find its four heights p_i and four errors e_i . What is the minimum value $E = e_1^2 + e_2^2 + e_3^2 + e_4^2$?

4. Section 4.3, Problem 17

Write down three equations for the line b = C + Dt to go through b = 7 at t = -1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution $\hat{\mathbf{x}} = (C, D)$ and draw the closest line.

5. Section 4.4, Problem 4

Give an example of each of the following:

- (a) A matrix Q that has orthonormal columns but $QQ^T \neq I$.
- (b) Two orthogonal vectors that are not linearly independent.
- (c) An orthonormal basis for \mathbf{R}^4 , where every component is $\frac{1}{2}$ or $-\frac{1}{2}$.
- 6. Suppose $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$. Find the solution of $A\mathbf{x} = \mathbf{b}$ and \mathbf{x} has the

minimum length $\|\mathbf{x}\|$. Is such an **x** always in the row space of *A*?

- 7. Section 4.4, Problem 15
 - (a) Find orthonormal vectors \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 such that \mathbf{q}_1 , \mathbf{q}_2 span the column space of

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}.$$

- (b) Which of the four fundamental subspaces contains q_3 ?
- (c) Solve $A\mathbf{x} = (1, 2, 7)$ by least squares.
- 8. Section 4.4, Problem 23

Find \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 (orthonormal) as combinations of \mathbf{a} , \mathbf{b} , \mathbf{c} (independent columns of A). Then write A as QR:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{bmatrix}.$$

- 9. Section 4.4, Problem 24
 - (a) Find a basis for the subspace S in \mathbf{R}^4 spanned by all solutions of

$$x_1 + x_2 + x_3 - x_4 = 0.$$

- (b) Find a basis for the orthogonal complement S^{\perp} .
- (c) Find **b**₁ in *S* and **b**₂ in S^{\perp} so that **b**₁ + **b**₂ = **b** = (1, 1, 1, 1).
- 10. Section 4.4, Problem 34

 $Q = I - 2\mathbf{u}\mathbf{u}^{T}$ is a reflection matrix when $\mathbf{u}^{T}\mathbf{u} = 1$.

- (a) Show that $Q\mathbf{u} = -\mathbf{u}$. The mirror is perpendicular to \mathbf{u} .
- (b) Find $Q\mathbf{v}$ when $\mathbf{u}^T\mathbf{v} = 0$. The mirror contains \mathbf{v} . It reflects to itself.