Linear Algebra

Problem Set 8

Due Wednesday, 13 May 2009 at 10:00 AM in EE207. Be sure to print your name and student ID on your homework.

1. Section 5.1, Problem 16

Find the determinants of a rank one matrix and a skew-symmetric matrix:

$$
A=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
1 & -4 & 5
\end{array}\right] \quad \text { and } \quad K=\left[\begin{array}{rrr}
0 & 1 & 3 \\
-1 & 0 & 4 \\
-3 & -4 & 0
\end{array}\right] .
$$

2. Section 5.1, Problem 18

Use row operations to show that the 3 by 3 "Vandermonde determinant" is

$$
\operatorname{det}\left[\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right]=(b-a)(c-a)(c-b)
$$

3. Section 5.1, Problem 28

True or false (give a reason if true or a 2 by 2 example if false):
(a) If A is not invertible then $A B$ is not invertible.
(b) The determinant of A is always the product of its pivots.
(c) The determinant of $A-B$ equals $\operatorname{det} A-\operatorname{det} B$.
(d) $A B$ and $B A$ have the same determinant.
4. Suppose P is a projection matrix and Q is an orthonormal matrix. Find all possible determinants of P and Q, respectively.
5. Section 5.1, Problem 34

If you know that $\operatorname{det} A=6$, what is the determinant of B ?

$$
\operatorname{det} A=\left|\begin{array}{l}
\text { row } 1 \\
\text { row } 2 \\
\text { row 3 }
\end{array}\right|=6 \quad \operatorname{det} B=\left|\begin{array}{c}
\text { row } 3+\text { row } 2+\text { row } 1 \\
\text { row } 2+\text { row } 1 \\
\text { row } 1
\end{array}\right|=?
$$

6. Section 5.2, Problem 15

The n by n determinant C_{n} has 1's above and below the main diagonal:

$$
C_{1}=|0| \quad C_{2}=\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right| \quad C_{3}=\left|\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right| \quad C_{4}=\left|\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right| .
$$

(a) What are these determinants of $C_{1}, C_{2}, C_{3}, C_{4}$?
(b) By cofactors find the relation between C_{n} and C_{n-1} and C_{n-2}. Find C_{10}.
7. Section 5.2, Problem 27

Block elimination subtracts $C A^{-1}$ times the first row $\left[\begin{array}{ll}A & B\end{array}\right]$ from the second row $\left[\begin{array}{ll}C & D\end{array}\right]$. This leaves the Schur complement $D-C A^{-1} B$ in the corner:

$$
\left[\begin{array}{rr}
I & 0 \\
-C A^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
0 & D-C A^{-1} B
\end{array}\right] .
$$

Take determinants of these block matrices to prove correct rules for square blocks:

$$
\begin{aligned}
\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right| & =|A|\left|D-C A^{-1} B\right| \\
& \text { (if } A^{-1} \text { exits) } \\
& =|A D-C B| \quad(\text { if } A C=C A)
\end{aligned}
$$

8. Suppose Q is a 5 by 3 matrix with orthonormal columns. Compute the determinants of $Q^{T} Q$ and $Q Q^{T}$.
9. Show that if A is singular, each row of the cofactor matrix C is in the nullspace of A. Use this property to find the nullspace of A :

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 2
\end{array}\right] .
$$

10. Section 5.3, Problem 10

From the formula $A C^{T}=(\operatorname{det} A) I$ show that det $C=(\operatorname{det} A)^{n-1}$.

