Due Wednesday, 27 May 2009 at 10:00 AM in EE207. Be sure to print your name and student ID on your homework.

1. Section 6.1, Problem 11

Here is a strange fact about 2 by 2 matrices with eigenvalues $\lambda_{1} \neq \lambda_{2}$: The columns of $A-\lambda_{1} I$ are multiples of the eigenvector \mathbf{x}_{2}. Any idea why this should be?
2. Section 6.1, Problem 12

From the unit vector $\mathbf{u}=\left(\frac{1}{6}, \frac{1}{6}, \frac{3}{6}, \frac{5}{6}\right)$ construct the rank one projection matrix $P=\mathbf{u} \mathbf{u}^{T}$.
(a) Show that $P \mathbf{u}=\mathbf{u}$. Then \mathbf{u} is an eigenvector with $\lambda=1$.
(b) If \mathbf{v} is perpendicular to \mathbf{u} show that $P \mathbf{v}=\mathbf{0}$. Then $\lambda=0$.
(c) Find three independent eigenvectors of P all with eigenvalue $\lambda=0$.
3. Section 6.1, Problem 19

A 3 by 3 matrix B is known to have eigenvalues $0,1,2$. This information is enough to find three of these:
(a) the rank of B
(b) the determinant of $B^{T} B$
(c) the eigenvalues of $B^{T} B$
(d) the eigenvalues of $(B+I)^{-1}$.
4. Section 6.1, Problem 27

The block B has eigenvalues 1, 2 and C has eigenvalues 3, 4 and D has eigenvalues 5, 7. Find the eigenvalues of the 4 by 4 matrix A :

$$
A=\left[\begin{array}{ll}
B & C \\
0 & D
\end{array}\right]=\left[\begin{array}{rrrr}
0 & 1 & 3 & 0 \\
-2 & 3 & 0 & 4 \\
0 & 0 & 6 & 1 \\
0 & 0 & 1 & 6
\end{array}\right] .
$$

5. Section 6.1, Problem 33

Suppose A has eigenvalues $0,3,5$ with independent eigenvectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
(a) Give a basis for the nullspace and a basis for the column space.
(b) Find a particular solution to $A \mathbf{x}=\mathbf{v}+\mathbf{w}$. Find all solutions.
(c) Show that $A \mathbf{x}=\mathbf{u}$ has no solution. (If it did then \qquad would be in the column space.)
6. Section 6.1, Problem 36

There are six 3 by 3 permutation matrices P. What numbers can be the determinants of P ? What numbers can be pivots? What numbers can be the trace of P ? What four numbers can be eigenvalues of P ?
7. Section 6.2, Problem 20

Find Λ and S to diagonalize $A=\left[\begin{array}{ll}.6 & .4 \\ .4 & .6\end{array}\right]$. What is the limit of Λ^{k} as $k \rightarrow \infty$? What is the limit of $S \Lambda^{k} S^{-1}$? In the columns of this limiting matrix you see the
\qquad _.
8. Section 6.2, Problem 25

Show that $\operatorname{trace}(A B)=\operatorname{trace}(B A)$, by adding the diagonal entries of $A B$ and $B A$:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
q & r \\
s & t
\end{array}\right] .
$$

Choose A as S and B as ΛS^{-1}. Then $S \Lambda S^{-1}$ has the same trace as $\Lambda S^{-1} S$. The trace of A equals the trace of Λ which is \qquad .
9. Section 6.2, Problem 30

Suppose $A \mathbf{x}=\lambda \mathbf{x}$. If $\lambda=0$ then \mathbf{x} is in the nullspace. If $\lambda \neq 0$ then \mathbf{x} is in the column space. Those spaces have dimensions $(n-r)+r=n$. So why doesn't every square matrix have n linearly independent eigenvectors?
10. Section 6.2, Problem 35

Substituting $A=S \Lambda S^{-1}$ into the product $\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right) \cdots\left(A-\lambda_{n} I\right)$ and explain why this produces the zero matrix. We are substituting the matrix A for the number λ in the polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$. The Cayley-Hamilton theorem says that the product is always $p(A)=$ zero matrix, even if A is not diagonalizable.

