Solution to Problem Set 11

1. $6.4(8)$

If $A^{3}=0$ then all $\lambda^{3}=0$ so all $\lambda=0$ as in $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. If A is symmetric then $A^{3}=Q \Lambda^{3} Q^{T}=0$ gives $\Lambda=0$ and only symmetric possibility is $A=Q 0 Q^{T}=$ zero matrix.
2. $6.4(16)$
(a) If $A z=\lambda y$ and $A^{T} y=\lambda z$ then $B[y ;-z]=\left[-A z ; A^{T} y\right]=-\lambda[y ;-z]$. So $-\lambda$ is also an eigenvalue of B.
(b) $A^{T} A z=A^{T}(\lambda y)=\lambda^{2} z$. The eigenvalues of $A^{T} A$ are ≥ 0.
(c) $\lambda=-1,-1,1,1 ; x_{1}=(1,0,-1,0), x_{2}=(0,1,0,-1), x_{3}=(1,0,1,0), x_{4}=(0,1,0,1)$.
3. $6.4(22)$

If $A^{T}=-A$ then $A^{T} A=A A^{T}=-A^{2}$. If A is orthogonal then $A^{T} A=A A^{T}=I$.
$A=\left[\begin{array}{cc}a & 1 \\ -1 & d\end{array}\right]$ is normal only if $a=d$. Then $x=\left[\begin{array}{c}1 \\ i\end{array}\right]$ is perpendicular to $\left[\begin{array}{c}1 \\ -i\end{array}\right]$.
4. $6.4(24)$
A is invertible, orthogonal, permutation, diagonalizable; B is projection, diagonalizable. $Q R, S \Lambda S^{-1}, Q \Lambda Q^{T}$ possible for $A ; S \Lambda S^{-1}$ and $Q \Lambda Q^{T}$ possible for B.
5. $6.4(26)$

Orthogonal and symmetric requires $|\lambda|=1$ and λ real, so every $\lambda= \pm 1$. Then $A= \pm I$ or $A=Q \Lambda Q^{T}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]=$ reflection.
6. $6.5(24)$

The sllipse $x^{2}+x y+y^{2}=1$ has axes with half-lengths $a=1 / \sqrt{\lambda_{1}}=\sqrt{2}$ and $b=\sqrt{2 / 3}$.
7. $6.5(2)$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & 0 \\
b & 1
\end{array}\right]\left[\begin{array}{cc}
1 & b \\
0 & 9-b^{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 9-b^{2}
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]=L D L^{T} ; \text { Positive definite for }-3<b<3} \\
& {\left[\begin{array}{cc}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 4 \\
0 & c-8
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & c-8
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
0 & 1
\end{array}\right]=L D L^{T} ; \text { Positive definite for } c>8}
\end{aligned}
$$

8. $6.5(20)$
(a) The determinant is positive, all $\lambda>0$.
(b) All projection matrices except I are singular.
(c) The diagonal entries of D are its eigenvalues.
(d) $-I$ has det $=1$ when n is even.
9. $6.5(25)$
$A=\left[\begin{array}{ll}9 & 3 \\ 3 & 5\end{array}\right] ; C=\left[\begin{array}{ll}2 & 0 \\ 4 & 3\end{array}\right]$.
10. $6.5(28)$
$\operatorname{det} A=10 ; \lambda=2$ and $5 ; x_{1}=(\cos \theta, \sin \theta), x_{2}=(-\sin \theta, \cos \theta)$; the $\lambda^{\prime} s$ are positive.
