Solution to Problem Set 3
1.
（a）$\because A A=A$ 兩邊同乘 A^{-1}
$\Rightarrow A^{-1} A A=A^{-1} A$

$$
\Rightarrow A=I
$$

（b）

$$
\begin{gathered}
\text { guess } B=(I-c A)^{-1}=I+k A \\
\begin{array}{c}
B(I-c A)=(I+k A)(I-c A) \\
=I+k A-c A-c k A A \\
=I+(k-c-c k) A
\end{array}
\end{gathered}
$$

$$
\text { if } k-c-c k=0 \text {, then } B(I-c A)=I \text { 即 } B=(I-c A)^{-1}
$$

$$
\Rightarrow k=\frac{c}{1-c} \quad, c \neq 1
$$

$$
\therefore B=I+\frac{c}{1-c} A, c \neq 1
$$

2.

$\because E^{2}=n E$
we guess $(I-E)^{-1}=I+k E$
$\therefore(I-E)(I+k E)=I-E+k E-k E E=I-E+k E-n k E=I$
$\therefore k-1-n k=0 \Rightarrow k=\frac{1}{1-n}$
$(I-E)^{-1}=\frac{1}{1-n}\left[\begin{array}{cccc}2-n & 1 & \cdots & 1 \\ 1 & \ddots & & \vdots \\ \vdots & & \ddots & 1 \\ 1 & \cdots & 1 & 2-n\end{array}\right]$
3． $2.4(35)$
（a）The $(2,2)$ block $S=D-C A^{-1} B$ is the Schur complement
（b）$X=\left[\begin{array}{cc}I & A^{-1} B \\ 0 & I\end{array}\right]$
4.
（a）$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}I & 0 \\ C A^{-1} & I\end{array}\right]\left[\begin{array}{cc}A & 0 \\ 0 & D-C A^{-1} B\end{array}\right]\left[\begin{array}{cc}I & A^{-1} B \\ 0 & I\end{array}\right]$
（b）$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]^{-1}=\left[\begin{array}{cc}I & -A^{-1} B \\ 0 & I\end{array}\right]\left[\begin{array}{cc}A^{-1} & 0 \\ 0 & \left(D-C A^{-1} B\right)^{-1}\end{array}\right]\left[\begin{array}{cc}I & 0 \\ -C A^{-1} & I\end{array}\right]$
5．3．1（5）
（a）Yes
（b）No，沒通過原點
（c）No，ex：$(1,1,0) \in V,(0,0,1) \in V \operatorname{but}(1,1,0)+(0,0,1)=(1,1,1) \notin V$
（d）Yes
（e）Yes
（f）No，ex：$(1,2,3) \in V$ but $(-1,-2,-3) \notin V$
6． 3.1 （4）
The zero vector in M is $\left[\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right] ; \frac{1}{2} A=\left[\begin{array}{cc}1 & -1 \\ 1 & -1\end{array}\right]$ and $-A=\left[\begin{array}{cc}-2 & 2 \\ -2 & 2\end{array}\right]$ ．
The smallest subspace containing A consists of all matrices $c A$ ．
7．3．1（18）
（a）True
（b）True
（c）False，because not include $\mathbf{0}$
8.
$b 2=b 3$
9.

The extra column b enlarges the column space unless b is already in the column space of A：
$\left[\begin{array}{ll}A & b\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right] \begin{gathered}(\text { larger column space }) \\ (\text { no solution to } A x=b)\end{gathered}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right] \begin{gathered}(b \text { already in column space }) \\ (A x=b \text { has a solution })\end{gathered}$

10． 3.1 （27）
（a）False ，because not include $\mathbf{0}$ ．
（b）True
（c）True
（d）False ，ex：$A=I, A-I=0$ not equals the column space of A ．

