Solution to Problem Set 6
1.
（a）
$A\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1\end{array}\right]=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 0 & 0 & -2 \\ 1 & -1 & 1\end{array}\right] \Rightarrow A=\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right]$
（b）
Let $B=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1\end{array}\right]$
$A^{\prime}=B^{-1} A B=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & -2 \\ -1 & 1 & 0\end{array}\right]$
2.
$1 \xrightarrow{L} x ; x \xrightarrow{L} 1+x^{2} ; x^{2} \xrightarrow{L} 2 x+x^{3}$
$\therefore A\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \Rightarrow A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
\therefore the basis for the range of L is
$\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 1\end{array}\right]$
3.
（a）we need to show that $T^{-1}(T(x))=x \& T\left(T^{-1}(x)\right)=x$
$T^{-1}(T(x))=A^{-1}(A x+b)-A^{-1} b=x+A^{-1} b-A^{-1} b=x$
$T\left(T^{-1}(x)\right)=A\left(A^{-1} x-A^{-1} b\right)+b=x-b+b=x$
（b）
Let L_{1} ：法向量 $m_{1} \quad L_{2}$ ：法向量 m_{2}
$T\left(m_{1}\right)=A m_{1}+b \quad T\left(m_{2}\right)=A m_{2}+b$
if $L_{1} / / L_{2} \Rightarrow m_{1}=m_{2} \Rightarrow T\left(m_{1}\right)=T\left(m_{2}\right)$
轉換後的法向量仍然相同 $\Rightarrow L_{1}^{\prime} / / L_{2}^{\prime}$
4.

No,it is not possible to find the basis B.
$\because L=B[L]_{B} B^{-1}$
if $[L]_{B}=I$,then $L=B B^{-1}=I$
but L is rotate matrix(45 degrees).
5. (a)
$\left[\begin{array}{cc}1 & -2 \\ -3 & 4\end{array}\right][v]_{B}=\left[\begin{array}{cc}-7 & -5 \\ 9 & 7\end{array}\right][v]_{C}$
$\Rightarrow[v]_{C}=\left[\begin{array}{cc}2 & -1.5 \\ -3 & 2.5\end{array}\right][v]_{B}$
$\Rightarrow M=\left[\begin{array}{cc}2 & -1.5 \\ -3 & 2.5\end{array}\right]$
(b)

$$
[T]_{C}=M[T]_{B} M^{-1}=\left[\begin{array}{cc}
13 & 8 \\
-18 & -11
\end{array}\right]
$$

6. 4.1 (17)

If S is the subspace of R^{3} containing only the zero vector, then S^{\perp} is R^{3}.
If S is spanned by $(1,1,1)$, then S^{\perp} is spanned by $(1,-1,0)$ and $(1,0,-1)$, which is nullspace of S .
If S is spanned by $(2,0,0)$ and $(0,0,3)$, then S^{\perp} is spanned by $(0,1,0)$, which is nullspace of S.
7. $4.1(28)$
(a) $(1,-1,0)$ is in both planes.Normal vectors are perpendicular,but planes still intersect!
(b) Need three orthogonal vectors to span the whole orthogonal complement.
(c) Lines can meet without being orthogonal.
8. 4.1(30)

When $A B=0$,the column space of B is contained in the nullspace of A.Therefore the dimension of $C(B) \leq$ dimensionof $N(A)$.This means $\operatorname{rank}(B) \leq 4-\operatorname{rank}(A)$.
9. $4.2(13)$

$$
p=(1,2,3,0) . P=\text { square matrix }=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

10. $4.2(19)$

For any choice,say $(1,1,0)$ and $(2,0,1)$, the matrix P is $\left[\begin{array}{ccc}5 / 6 & 1 / 6 & 1 / 3 \\ 1 / 6 & 5 / 6 & -1 / 3 \\ 1 / 3 & -1 / 3 & 1 / 3\end{array}\right]$.

