Solution to Problem Set 7
1.

Let $u=\left[\begin{array}{c}-b \\ a\end{array}\right]$,which is the direction of line L.
so $A=\frac{u u^{T}}{u^{T} u}=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{cc}b^{2} & -a b \\ -a b & a^{2}\end{array}\right]$.
2.

Let $A=\left[\begin{array}{cc}1 & 5 \\ 3 & 1 \\ -2 & 4\end{array}\right]$.
so projection matrix $P=A\left(A^{T} A\right)^{-1} A^{T}=\frac{1}{3}\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.
and $p=P b=\frac{1}{3}\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right] \cdot\left[\begin{array}{c}4 \\ -2 \\ -3\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
3. $4.3(1)$
$A=\left[\begin{array}{cc}1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4\end{array}\right]$ and $b=\left[\begin{array}{c}0 \\ 8 \\ 8 \\ 20\end{array}\right]$ give $A^{T} A=\left[\begin{array}{cc}4 & 8 \\ 8 & 26\end{array}\right]$ and $A^{T} b=\left[\begin{array}{c}36 \\ 112\end{array}\right]$.
$A^{T} A \widehat{x}=A^{T} b$ gives $\widehat{x}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and $p=A \widehat{x}=\left[\begin{array}{c}1 \\ 5 \\ 13 \\ 17\end{array}\right]$ and $e=b-p=\left[\begin{array}{c}-1 \\ 3 \\ -5 \\ 3\end{array}\right]$.
$E=\|e\|^{2}=44$.
4. $4.3(17)$
$\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{c}7 \\ 7 \\ 21\end{array}\right]$.
The solution $\widehat{x}=\left[\begin{array}{l}9 \\ 4\end{array}\right]$ comes from $A^{T} A \widehat{x}=A^{T} b$.
$\Rightarrow\left[\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{l}35 \\ 42\end{array}\right]$
5. $4.4(4)$
(a) $Q=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right], Q Q^{T}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
(b) (1,0) and $(0,0)$ are orthogonal, not independent.
(c) $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right),\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$.
6.
$\operatorname{rref}(A)=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2\end{array}\right] \Rightarrow N(A)=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$
$\therefore x=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]+\alpha\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$
we want to minimize $\|x\|^{2}=x^{T} x$
$\Rightarrow \frac{\partial x^{T} x}{\partial \alpha}=0 \quad \Rightarrow \frac{\partial\left(10+2 \alpha+6 \alpha^{2}\right)}{\partial \alpha}=0$
$\Rightarrow \alpha=-\frac{1}{6}$
$\therefore x=\left[\begin{array}{c}17 / 6 \\ 4 / 3 \\ -1 / 6\end{array}\right]$
we can also express $x=x_{A}+x_{A^{\perp}}$, which x_{A} is in $R(A)$ and $x_{A^{\perp}}$ is in $N(A)$.
so project $\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ to $N(A)$ is $\frac{1}{6}\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$
$\therefore x=\frac{1}{6}\left[\begin{array}{c}17 \\ 8 \\ -1\end{array}\right]+\left(\alpha+\frac{1}{6}\right)\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\left(\right.$ note $\left.\left[\begin{array}{c}17 \\ 8 \\ -1\end{array}\right] \perp\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\right)$
\therefore when $\alpha=-\frac{1}{6} \quad x$ has minimum length $\|x\|$, and x must in the $R(A)$.
7. 4.4(15)
(a) $q_{1}=\frac{1}{3}(1,2,-2), q_{2}=\frac{1}{3}(2,1,2), q_{3}=\frac{1}{3}(2,-2,-1)$
(b) The nullspace of A^{T} contains q_{3}
(c) $\widehat{x}=\left(A^{T} A\right)^{-1} A^{T}\left[\begin{array}{l}1 \\ 2 \\ 7\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
8. $4.4(23)$
$q_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \quad q_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \quad q_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] . A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5\end{array}\right]$.
9. $4.4(24)$

Let $A=\left[\begin{array}{llll}1 & 1 & 1 & -1\end{array}\right]^{T} \Rightarrow A x=0$
(a) x is in $N(A)$.so basis for this space is $v_{1}=(-1,1,0,0), \quad v_{2}=(1,0,-1,0), \quad v_{3}=(1,0,0,1)$.
(b) $(1,1,1,-1)$.
(c) $b_{2}=\frac{u^{T} b}{u^{T} u} u=\frac{1}{2}(1,1,1,-1)$.

$$
b_{1}=b-b_{2}=\frac{1}{2}(1,1,1,3)
$$

10. $4.4(34)$
(a) $Q u=\left(I-2 u u^{T}\right) u=u-2 u u^{T} u$. This is $-u$, provided that $u^{T} u$ equals 1 .
(b) $Q v=\left(I-2 u u^{T}\right) v=u-2 u u^{T} v=u$, provided that $u^{T} v=0$.
