Linear Algebra

Spring2009

Solution to Problem Set 9

$1.\ 6.1(11)$

Let $M = (A - \lambda_2 I)(A - \lambda_1 I)$, by Problem 6.2(35) we can prove M = 0 which is called "Cayley-Hamilton Theorem". So columns of $(A - \lambda_1 I)$ is in the nullspace of $(A - \lambda_2 I)$. We know that $(A - \lambda_2 I)x_2 = 0$, x_2 is the null space of $(A - \lambda_2 I)$.

Therefore columns of $(A - \lambda_1 I)$ must be multiples of the eigenvector x_2 .

2.
$$6.1(13)$$

(a) $Pu = (uu^T)u = u(u^Tu) = u$ so $\lambda = 1$.

(b)
$$Pv = (uu^T)v = u(u^Tv) = 0$$
 so $\lambda = 0$.

(c)
$$x_1 = (-1, 1, 0, 0), x_2 = (-3, 0, 1, 0), x_3 = (-5, 0, 0, 1)$$
 are eigenvectors with $\lambda = 0$

$$3. \ 6.1(19)$$

- (a) rank=2
- (b) $det(B^T B) = 0$ $\therefore det(B) = 0$
- (c) we can't find
- (d) eigenvalues of $(B+I)^{-1}$ are 1, $\frac{1}{2}$, $\frac{1}{3}$.
- $4.\ 6.1(27)$

 $\lambda = 1, 2, 5, 7.$

- 5. 6.1(33)
 - (a) u is a basis for the nullspace, v nad w give a basis for the column space.
 - (b) $x_p = \left(0, \frac{1}{3}, \frac{1}{5}\right)$ is a particular solution. $x = x_p + \alpha u$.
 - (c) If Ax = u had a solution, u would be in the column space, giving demention 3.
- $6.\ 6.1(36)$

For 3 by 3 permutations: determinant = 1 or -1, all pivots =1, trace = 0,1 or 3, eigenvalues = 1 or -1 or $e^{2\pi i/3}$ or $e^{4\pi i/3}$.

7. 6.2(20)

$$\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & 0.2 \end{bmatrix} \text{ and } S = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}; \Lambda^k \to \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } S\Lambda^k S^{-1} \to \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}: \text{ steady state.}$$

$8.\ 6.2(25)$

 $\mathrm{trace}\; AB = (aq+bs) + (cr+dt) = (qa+rc) + (sb+td) = \mathrm{trace}BA.$

Proof for diagonalizable case: the trace of $S\Lambda S^{-1}$ is the trace of $(\Lambda S^{-1})S = \Lambda$ which is the sum of the $\lambda's$. 9. 6.2(30)

Two problems:

- 1.) The nullspace and column space can overlap, so x could be in both.
- 2.) There may not be r independent eigenvectors in the column space.
- $10.\ 6.2(35)$

If $A = S\Lambda S^{-1}$ then the product $(A - \lambda_1 I) \cdots (A - \lambda_n I)$ equals $S(\Lambda - \lambda_1 I) \cdots (\Lambda - \lambda_n I) S^{-1}$.

The factor $(\Lambda - \lambda_j I)$ is zero in row j. The product is zero in all rows = zero matrix.