Solution to Problem Set 9

1. $6.1(11)$

Let $M=\left(A-\lambda_{2} I\right)\left(A-\lambda_{1} I\right)$, by Problem $6.2(35)$ we can prove $M=0$ which is called
"Cayley-Hamilton Theoerm". So columns of $\left(A-\lambda_{1} I\right)$ is in the nullspace of $\left(A-\lambda_{2} I\right)$.
We know that $\left(A-\lambda_{2} I\right) x_{2}=0, x_{2}$ is the null space of $\left(A-\lambda_{2} I\right)$.
Therefore columns of $\left(A-\lambda_{1} I\right)$ must be multiples of the eigenvector x_{2}.
2. $6.1(13)$
(a) $P u=\left(u u^{T}\right) u=u\left(u^{T} u\right)=u$ so $\lambda=1$.
(b) $P v=\left(u u^{T}\right) v=u\left(u^{T} v\right)=0$ so $\lambda=0$.
(c) $x_{1}=(-1,1,0,0), x_{2}=(-3,0,1,0), x_{3}=(-5,0,0,1)$ are eigenvectors with $\lambda=0$.
3. $6.1(19)$
(a) $\mathrm{rank}=2$
(b) $\operatorname{det}\left(B^{T} B\right)=0 \quad \because \operatorname{det}(B)=0$
(c) we can't find
(d) eigenvalues of $(B+I)^{-1}$ are $1,1 / 2,1 / 3$.
4. $6.1(27)$
$\lambda=1,2,5,7$.
5. 6.1(33)
(a) u is a basis for the nullspace, v nad w give a basis for the column space.
(b) $x_{p}=\left(0, \frac{1}{3}, \frac{1}{5}\right)$ is a particular solution. $x=x_{p}+\alpha u$.
(c) If $A x=u$ had a solution, u would be in the column space, giving demention 3 .
6. $6.1(36)$

For 3 by 3 permutations: determinant $=1$ or -1 , all pivots $=1$, trace $=0,1$ or 3 , eigenvalues $=1$ or -1 or $e^{2 \pi \mathrm{i} / 3}$ or $e^{4 \pi \mathrm{i} / 3}$.
7. $6.2(20)$
$\Lambda=\left[\begin{array}{cc}1 & 0 \\ 0 & 0.2\end{array}\right]$ and $S=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] ; \Lambda^{k} \rightarrow\left[\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right]$ and $S \Lambda^{k} S^{-1} \rightarrow\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]:$ steady state.
8. $6.2(25)$
trace $A B=(a q+b s)+(c r+d t)=(q a+r c)+(s b+t d)=\operatorname{trace} B A$.
Proof for diagonalizable case: the trace of $S \Lambda S^{-1}$ is the trace of $\left(\Lambda S^{-1}\right) S=\Lambda$ which is the sum of the $\lambda^{\prime} s$.
9. $6.2(30)$

Two problems:
1.) The nullspace and column space can overlap, so x could be in both.
2.) There may not be r independent eigenvectors in the column space.
10. $6.2(35)$

If $A=S \Lambda S^{-1}$ then the product $\left(A-\lambda_{1} I\right) \cdots\left(A-\lambda_{n} I\right)$ equals $S\left(\Lambda-\lambda_{1} I\right) \cdots\left(\Lambda-\lambda_{n} I\right) S^{-1}$. The factor $\left(\Lambda-\lambda_{j} I\right)$ is zero in row j . The product is zero in all rows $=$ zero matrix.

