Linear Algebra

Problem Set 1

Due Wednesday, 3 March 2010 at 10:00 AM in EE105. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. $(20 \mathrm{pts})$ A cubic polynomial $f(t)=a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}$ in t with real coefficients has the value 9 at 2, the value 32 at 3 and the derivative $f^{\prime}(t)$ has the value 0 at 1 and the value 12 at 2 . Find $f(t)$. (Hint: There are two obvious orderings of the variables, one of which gives much easier equation to solve than the others.)
2. (15pts) Let $A=\left[\begin{array}{rrr}2 & -2 & 1 \\ 4 & -3 & -1 \\ -6 & 7 & -6\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}1 \\ -2 \\ 2 t-1\end{array}\right]$, where t is a real number. For which values of t does the system of linear equations $A \mathbf{x}=\mathbf{b}$ have a solution?
3. (20pts) The three types of elementary row operations are not independent: the row exchange operation can be accomplished by a sequence of the other two types of row operations, namely, replacing (i.e., subtracting $k \times$ rowi from rowj) and scaling (i.e., multiplying rowi by $k, k \neq 0$). Apply a sequence of replacing and scaling operations to the identify matrix I to obtain the permutation matrix
$P=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
4. (15pts) Section 2.3, Problem 31

Find elimination matrices E_{21} then E_{32} then E_{43} to change K into U :

$$
E_{43} E_{32} E_{21}\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]=\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & 0 & 5 / 4
\end{array}\right] .
$$

Apply those three steps to the identity matrix I, to multiply $E_{43} E_{32} E_{21}$.
5. (20pts) Consider the following three systems where the coefficients are the same for each system, but the right-hand sides are different:

$$
\begin{aligned}
& 4 x-8 y+5 z=1 \\
& 4 x-7 y+4 z=0 \\
& 3 x-4 y+2 z=0
\end{aligned}\left|\begin{array}{l}
0 \\
0 \\
0
\end{array}\right| \begin{aligned}
& 0 \\
& 1
\end{aligned}
$$

Solve all three systems at one time by performing Gaussian elimination on an augmented matrix of the form $\left[A\left|\mathbf{b}_{1}\right| \mathbf{b}_{2} \mid \mathbf{b}_{3}\right]$. What is the 3 by 3 matrix X such that $A X=I$?
6. (10pts) Without using Gaussian elimination, solve X by inspection. Identify the size of X first.
(a) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 4 & 1\end{array}\right] X=\left[\begin{array}{lll}1 & 5 & 3 \\ 2 & 5 & 3 \\ 3 & 5 & 4 \\ 4 & 5 & 5\end{array}\right]$
(b) $X\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$

