Linear Algebra Problem Set 11

Due Wednesday, 2 June 2010 at 10:00 AM in EE102. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (20pts) Section 6.3, Problem 4

A door is opened between rooms that hold v(0) = 30 people and w(0) = 10 people. The movement between rooms is proportional to the difference v - w:

$$\frac{dv}{dt} = w - v$$
 and $\frac{dw}{dt} = v - w$.

Show that the total v + w is constant (40 people). Find the matrix in $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$

and its eigenvalues and eigenvectors. What are v and w at t = 1 and at $t = \infty$?

- 2. (15pts) When *A* is skew-symmetric ($A^T = -A$), $Q = e^{At}$ is orthogonal. Prove $Q^T = e^{-At}$ from the series for $Q = e^{At}$. Then $Q^TQ = I$.
- 3. (15pts) Find an invertible matrix *S* and a matrix *C* of the form $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ such

that the given matrix has the form $A = \begin{bmatrix} 17 & 26 \\ -10 & -15 \end{bmatrix} = SCS^{-1}$.

4. (15pts) Suppose a real 3 by 3 matrix A has eigenvalues -0.5, 0.2+0.3i, 0.2-0.3i, with corresponding eigenvectors

$$\mathbf{x}_{1} = \begin{bmatrix} -1\\2\\-1 \end{bmatrix}, \quad \mathbf{x}_{2} = \begin{bmatrix} 1-2i\\4i\\2 \end{bmatrix}, \quad \mathbf{x}_{3} = \begin{bmatrix} 1+2i\\-4i\\2 \end{bmatrix}.$$

Write the general solution of $\mathbf{u}' = A\mathbf{u}$ using complex eigenvalues and eigenvectors, and then find the general *real* solution.

- 5. (20pts) True or false, with a good reason:
 - (a) A can't be similar to A + I.
 - (b) If A is invertible and B is similar to A, then B is also invertible.
 - (c) If A is similar to B, then A^3 is similar to B^3 .
 - (d) If A^2 is similar to B^2 , then A is similar to B.
 - (e) It is impossible that A is similar to A^{-1} .
- 6. (15pts) If *A* is 6 by 4 and *B* is 4 by 6, *AB* and *BA* have different sizes. But with blocks

$$M^{-1}FM = \begin{bmatrix} I & -A \\ 0 & I \end{bmatrix} \begin{bmatrix} AB & 0 \\ B & 0 \end{bmatrix} \begin{bmatrix} I & A \\ 0 & I \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ B & BA \end{bmatrix} = G.$$

- (a) What sizes are the four blocks (the same four sizes in each matrix)?
- (b) This equation is $M^{-1}FM = G$, so *F* and *G* have the same 10 eigenvalues. *F* has the 6 eigenvalues of *AB* plus 4 zeros; *G* has the 4 eigenvalues of *BA* plus 6 zeros. Show that *AB* has the same eigenvalues as *BA* plus *k* zeros. What is *k*?