Linear Algebra

Problem Set 11

Due Wednesday, 2 June 2010 at 10:00 AM in EE102. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. $(20 \mathrm{pts})$ Section 6.3 , Problem 4

A door is opened between rooms that hold $v(0)=30$ people and $w(0)=10$ people. The movement between rooms is proportional to the difference $v-w$:

$$
\frac{d v}{d t}=w-v \text { and } \frac{d w}{d t}=v-w .
$$

Show that the total $v+w$ is constant (40 people). Find the matrix in $\frac{d \mathbf{u}}{d t}=A \mathbf{u}$ and its eigenvalues and eigenvectors. What are v and w at $t=1$ and at $t=\infty$?
2. (15 pts) When A is skew-symmetric $\left(A^{T}=-A\right), Q=e^{A t}$ is orthogonal. Prove $Q^{T}=e^{-A t}$ from the series for $Q=e^{A t}$. Then $Q^{T} Q=I$.
3. (15pts) Find an invertible matrix S and a matrix C of the form $C=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ such that the given matrix has the form $A=\left[\begin{array}{rr}17 & 26 \\ -10 & -15\end{array}\right]=S C S^{-1}$.
4. (15 pts) Suppose a real 3 by 3 matrix A has eigenvalues $-0.5,0.2+0.3 i, 0.2-0.3 i$, with corresponding eigenvectors

$$
\mathbf{x}_{1}=\left[\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{r}
1-2 i \\
4 i \\
2
\end{array}\right], \quad \mathbf{x}_{3}=\left[\begin{array}{r}
1+2 i \\
-4 i \\
2
\end{array}\right] .
$$

Write the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ using complex eigenvalues and eigenvectors, and then find the general real solution.
5. (20pts) True or false, with a good reason:
(a) A can't be similar to $A+I$.
(b) If A is invertible and B is similar to A, then B is also invertible.
(c) If A is similar to B, then A^{3} is similar to B^{3}.
(d) If A^{2} is similar to B^{2}, then A is similar to B.
(e) It is impossible that A is similar to A^{-1}.
6. (15pts) If A is 6 by 4 and B is 4 by $6, A B$ and $B A$ have different sizes. But with blocks

$$
M^{-1} F M=\left[\begin{array}{cc}
I & -A \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A B & 0 \\
B & 0
\end{array}\right]\left[\begin{array}{cc}
I & A \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
B & B A
\end{array}\right]=G .
$$

(a) What sizes are the four blocks (the same four sizes in each matrix)?
(b) This equation is $M^{-1} F M=G$, so F and G have the same 10 eigenvalues. F has the 6 eigenvalues of $A B$ plus 4 zeros; G has the 4 eigenvalues of $B A$ plus 6 zeros. Show that $A B$ has the same eigenvalues as $B A$ plus k zeros. What is k ?

