Linear Algebra

Problem Set 2

Due Wednesday, 10 March 2010 at 10:00 AM in EE102. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Find the inverses (in any legal way) of

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 2 & 0 \\
0 & 3 & 0 & 0 \\
4 & 0 & 0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
3 & 7 & 0 & 0 \\
0 & 0 & 5 & 3 \\
0 & 0 & 8 & 5
\end{array}\right] .
$$

(Actually, you don't need to use Gauss-Jordan method. Find the inverses by inspection.)
2. (10pts) Without finding A^{-1}, use Gauss-Jordan method to solve the following equation:

$$
A X=\left[\begin{array}{lll}
1 & 3 & 1 \\
0 & 2 & 1 \\
4 & 1 & 1
\end{array}\right] X=\left[\begin{array}{rrr}
1 & 9 & 2 \\
2 & 6 & 1 \\
-2 & 13 & 5
\end{array}\right]
$$

3. (15pts) Suppose that A, B, and $A-B$ are invertible $n \times n$ matrices. By direct multiplication, show that

$$
(A-B)^{-1}=A^{-1}+A^{-1}\left(B^{-1}-A^{-1}\right)^{-1} A^{-1} .
$$

4. (20pts) Suppose the matrix $\left[\begin{array}{rrrrr}1 & 3 & 4 & a & b \\ 2 & 1 & 5 & 3 & 0 \\ 0 & 4 & 2 & -4 & c\end{array}\right]$ can be transformed to

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & -6 & f \\
0 & 1 & 0 & d & -6 \\
0 & 0 & 1 & e & -4
\end{array}\right] \text { with a series of row operations. Find } a, b, c, d, e \text {, and } f \text {. }
$$

(Actually, you don't need to use Gaussian elimination. The 3 by 3 identity submatrix in the second matrix provides a clue to solve the problem in an easy way.)
5. (20pts) Suppose $B=(I-A)(I+A)^{-1}$ and $A=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 0 & 6 & 1\end{array}\right]$. Find $(I+B)^{-1}$.
(Please don't do a lot of calculations! Try removing $(I+A)^{-1}$ from the equation by multiplying some matrix to the right.)
6. (20pts) Suppose that A, B, and $A+B$ are invertible. Show that $I+B A^{-1}$ is invertible. This can be done by finding out its inverse directly, that is, find X such that $\left(I+B A^{-1}\right) X=I$. Use this result to prove that

$$
A(A+B)^{-1} B=B(A+B)^{-1} A=\left(A^{-1}+B^{-1}\right)^{-1} .
$$

(One way to find the inverse of $A^{-1}+B^{-1}$ is to express this matrix sum as a sequence of matrix multiplications, say $X Y Z$, and then use the rule: $\left.(X Y Z)^{-1}=Z^{-1} Y^{-1} X^{-1}.\right)$

