Due Wednesday, 17 March 2010 at 10:00 AM in EE102. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (20pts)
(a) An n by n matrix A is called idempotent if $A^{2}=A$, where $A^{2}=A A$. If A is idempotent, find the inverse of $I-c A$ (if possible) for some scalar c. (Will the inverse of $I-c A$ look like $I-d A$?)
(b) Let E be the n by n matrix each of whose entries is 1 . What is the inverse of $I-E$? (What is the relationship between E and E^{2} ?)
2. (20pts) Let B be a skew-symmetric matrix, $B^{T}=-B$. If $A=(I+B)(I-B)^{-1}$, prove that $A^{-1}=A^{T}$.
3. (15pts) Let

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 4 & 17 \\
3 & 6 & -12 & 3 \\
2 & 3 & -3 & 2 \\
0 & 2 & -2 & 6
\end{array}\right] .
$$

Find the permutation matrix P as well as the LU factors such that $P A=L U$.
4. (15pts) If A is a matrix that contains only integer entries and all of its pivots are 1 , explain why A^{-1} must also be an integer matrix. (Think of LU factorization. What is the inverse of L ?) Use this fact to create a 3 by 3 invertible matrix $A, A \neq I$, satisfying the above requirements. Show A and its inverse.
5. (15pts) If A is symmetric and possesses an LDU factorization, explain why it must be given by $A=L D L^{T}$.
6. (15pts) Determine the inverse of the block matrix $\left[\begin{array}{ll}A & 0 \\ B & C\end{array}\right]$, where A is m by m, and C is n by n. What conditions must be satisfied so that the block matrix is invertible?

