Linear Algebra Problem Set 7

Due Wednesday, 28 April 2010 at 10:00 AM in EE102. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (25pts) Consider two bases
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$
 and $C = \left\{ \begin{bmatrix} 5\\4\\5 \end{bmatrix}, \begin{bmatrix} -5\\-6\\-5 \end{bmatrix} \right\}$ for a vector

space V. Consider a linear transform $T: V \to V$, defined by

 $T\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\2\\3\end{bmatrix}, T\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\0\\2\end{bmatrix}.$ Suppose the coordinate vector of **x** with respect to basis \mathcal{B} is $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix}3\\1\end{bmatrix}.$ (a) Find $T(\mathbf{x})$.

- (b) Find $[\mathbf{x}]_{C}$ and $[T(\mathbf{x})]_{C}$.
- (c) Find the change-of-coordinates matrix from basis \mathcal{B} to C, $[B]_{C}$. Note that

$$\left[\mathbf{x}\right]_{C} = \left[B\right]_{C} \left[\mathbf{x}\right]_{B}.$$

- (d) Find the 2 by 2 matrix representation for T with respect to basis \mathcal{B} .
- (e) Find the 2 by 2 matrix representation for T with respect to basis C...
- 2. (15pts) Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ and $C = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$ be bases for a vector space *V*, and suppose $\mathbf{b}_1 = 4\mathbf{c}_1 - \mathbf{c}_2$, $\mathbf{b}_2 = -\mathbf{c}_1 + \mathbf{c}_2 + \mathbf{c}_3$, $\mathbf{b}_3 = \mathbf{c}_2 - 2\mathbf{c}_3$.
 - (a) Find the 2^{nd} column of the change-of-coordinates matrix from \mathcal{B} to C.
 - (b) Find the 3^{rd} column of the change-of-coordinates matrix from C to B.
- 3. (25pts) Suppose *W* is the subspace spanned by $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -5 \\ 1 \\ 3 \end{bmatrix}$.

(a) Find the point in W that is closest to $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$.

- (b) Find the projection matrix P_W onto W. What is rank P_W ?
- (c) Find the projection matrix $P_{W^{\perp}}$ onto W^{\perp} . What is rank $P_{W^{\perp}}$?
- (d) Find a basis for W^{\perp} . (Think of the column space of $P_{W^{\perp}}$.)
- 4. (15pts) Show that if $P^T = P$ and $P^2 = P$ then *P* is an orthogonal projection matrix. Note that *P* is an orthogonal projection matrix if $(I P)\mathbf{x} \perp P\mathbf{y}$, for any \mathbf{x} and \mathbf{y} . This means that the column space of *P* is orthogonal to the column space of (I P).
- 5. (20pts) Section 4.2, Problem 30
 - (a) Find the projection matrix P_C onto the column space of A (after looking closely at the matrix!)

 $\begin{bmatrix} 3 & 6 & 6 \\ 4 & 8 & 8 \end{bmatrix}$

(b) Find the 3 by 3 projection matrix P_R onto the row space of A. Multiply $B=P_CAP_R$. Your answer B should be a little surprising—can you explain it?