Linear Algebra

Problem Set 7

Due Wednesday, 28 April 2010 at 10:00 AM in EE102. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (25pts) Consider two bases $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ and $C=\left\{\left[\begin{array}{l}5 \\ 4 \\ 5\end{array}\right],\left[\begin{array}{l}-5 \\ -6 \\ -5\end{array}\right]\right\}$ for a vector space V. Consider a linear transform $T: V \rightarrow V$, defined by $T\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right], T\left(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 0 \\ 2\end{array}\right]$. Suppose the coordinate vector of \mathbf{x} with respect to basis \mathcal{B} is $[\mathbf{x}]_{B}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
(a) Find $T(\mathbf{x})$.
(b) Find $[\mathbf{x}]_{C}$ and $[T(\mathbf{x})]_{C}$.
(c) Find the change-of-coordinates matrix from basis \mathcal{B} to C, $[B]_{C}$. Note that

$$
[\mathbf{x}]_{C}=[B]_{C}[\mathbf{x}]_{B} .
$$

(d) Find the 2 by 2 matrix representation for T with respect to basis \mathcal{B}.
(e) Find the 2 by 2 matrix representation for T with respect to basis C.
2. (15pts) Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ and $C=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right\}$ be bases for a vector space V, and suppose $\mathbf{b}_{1}=4 \mathbf{c}_{1}-\mathbf{c}_{2}, \mathbf{b}_{2}=-\mathbf{c}_{1}+\mathbf{c}_{2}+\mathbf{c}_{3}, \mathbf{b}_{3}=\mathbf{c}_{2}-2 \mathbf{c}_{3}$.
(a) Find the $2^{\text {nd }}$ column of the change-of-coordinates matrix from \mathcal{B} to C.
(b) Find the $3^{\text {rd }}$ column of the change-of-coordinates matrix from C to B.
3. (25pts) Suppose W is the subspace spanned by $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}-5 \\ 1 \\ 3\end{array}\right]$.
(a) Find the point in W that is closest to $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
(b) Find the projection matrix P_{W} onto W. What is $\operatorname{rank} P_{W}$?
(c) Find the projection matrix $P_{W^{\perp}}$ onto W^{\perp}. What is $\operatorname{rank} P_{W^{\perp}}$?
(d) Find a basis for W^{\perp}. (Think of the column space of $P_{W^{\perp}}$.)
4. (15pts) Show that if $P^{T}=P$ and $P^{2}=P$ then P is an orthogonal projection matrix. Note that P is an orthogonal projection matrix if $(I-P) \mathbf{x} \perp P \mathbf{y}$, for any \mathbf{x} and \mathbf{y}. This means that the column space of P is orthogonal to the column space of $(I-P)$.
5. (20pts) Section 4.2, Problem 30
(a) Find the projection matrix P_{C} onto the column space of A (after looking closely at the matrix!)
$\left[\begin{array}{lll}3 & 6 & 6 \\ 4 & 8 & 8\end{array}\right]$
(b) Find the 3 by 3 projection matrix P_{R} onto the row space of A. Multiply $B=P_{C} A P_{R}$. Your answer B should be a little surprising-can you explain it?

