Due Wednesday, 5 May 2010 at 10:00 AM in EE102. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Section 4.3, Problem 1

With $b=0,8,8,20$ at $t=0,1,3,4$, set up and solve the normal equations
$A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. For the best line in Figure 4.9a, find its four heights p_{i} and four
errors e_{i}. What is the minimum value $E=e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}$?
2. (15pts) Section 4.3, Problem 9

For the closest parabola $b=C+D t+E t^{2}$ to the same four points, write down the unsolvable equations $A \mathbf{x}=\mathbf{b}$ in three unknowns $\mathbf{x}=(C, D, E)$. Set up the three normal equations $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$ (solution not required). In Figure 4.9a you are now fitting a parabola to 4 points-what is happening in Figure 4.9b?
3. (20pts) Express the Gram-Schmidt orthogonalization of $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$ as $A=$ $Q R$. With the same matrix A, and with $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, use $A=Q R$ to solve the least squares problem $A \mathbf{x}=\mathbf{b}$.
4. (20pts) Let $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 1 & 3 \\ 1 & 2 & 4 \\ 1 & 1 & 3\end{array}\right]$. Find the projection matrices onto the column space, row space, nullspace, and left nullspace of A, respectively.
5. (15pts) Section 4.4, Problem 24
(a) Find a basis for the subspace S in \mathbf{R}^{4} spanned by all solutions of

$$
x_{1}+x_{2}+x_{3}-x_{4}=0 .
$$

(b) Find a basis for the orthogonal complement S^{\perp}.
(c) Find \mathbf{b}_{1} in S and \mathbf{b}_{2} in S^{\perp} so that $\mathbf{b}_{1}+\mathbf{b}_{2}=\mathbf{b}=(1,1,1,1)$.
6. (15pts) Suppose m by n matrix Q contains orthonormal columns. It is known that $P=Q Q^{T}$ is the projection onto the column space of Q. Now add another column a to produce $A=\left[\begin{array}{ll}Q & \mathbf{a}\end{array}\right]$. What is the new orthonormal vector \mathbf{q} from Gram-Schmidt?

