Solutions to Homework 10

1.

$\mathbf{A}=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right] \sim\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad \therefore \operatorname{rank}(\mathbf{A})=1$
Consider the equation $\mathbf{A x}=0=0 \cdot \mathbf{x}$
$\Rightarrow \operatorname{nullity}(\mathbf{A})=$ number of zero eigenvalues of \mathbf{A}
$\Rightarrow \lambda_{1}=\lambda_{2}=\lambda_{3}=0$
Also, $\sum_{i=1}^{4} \lambda_{i}=\operatorname{tr}(\mathbf{A}) \quad \therefore \lambda_{4}=4$
$\mathbf{B}=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right] \sim\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad \therefore \operatorname{rank}(\mathbf{B})=2$
\Rightarrow Expect that $\lambda_{1}=\lambda_{2}=0$
$\operatorname{det}(\mathbf{B}-\lambda \mathbf{I})=\left|\begin{array}{cccc}1-\lambda & 0 & 1 & 0 \\ 0 & 1-\lambda & 0 & 1 \\ 1 & 0 & 1-\lambda & 0 \\ 0 & 1 & 0 & 1-\lambda\end{array}\right|=(1-\lambda)\left|\begin{array}{ccc}1-\lambda & 0 & 1 \\ 0 & 1-\lambda & 0 \\ 1 & 0 & 1-\lambda\end{array}\right|+1\left|\begin{array}{ccc}0 & 1 & 0 \\ 1-\lambda & 0 & 1 \\ 1 & 0 & 1-\lambda\end{array}\right|$
$=\lambda^{4}-4 \lambda^{3}+4 \lambda^{2}=0$
$\Rightarrow \lambda^{2}\left(\lambda^{2}-4 \lambda+4\right)=0$
$\Rightarrow \lambda_{1}=\lambda_{2}=0, \lambda_{3}=\lambda_{4}=2$
Another approach:
Observe that $\mathbf{B}^{2}=2 \mathbf{B}$
$\Rightarrow \lambda^{2}-2 \lambda=0$
$\Rightarrow \lambda=0,2$
$\because \operatorname{nullity}(\mathbf{B})=2$
$\therefore \mathbf{B}$ has two zero eigenvalues
$\because \sum_{i=1}^{4} \lambda_{i}=\operatorname{tr}(\mathbf{B})$
$\Rightarrow \lambda=0,0,2,2$
2.

Use characteristic polynomial to prove it
$\Rightarrow(\mathbf{A}-\lambda \mathbf{I})=\left[\left(\mathbf{A}^{\mathrm{T}}-\lambda \mathbf{I}\right)\right]^{\mathrm{T}}$
$\Rightarrow|(\mathbf{A}-\lambda \mathbf{I})|=\left|\left[\left(\mathbf{A}^{\mathrm{T}}-\lambda \mathbf{I}\right)\right]^{\mathrm{T}}\right|=\left|\left(\mathbf{A}^{\mathrm{T}}-\lambda \mathbf{I}\right)\right|=0$
The characteristic polynomials of \mathbf{A} and \mathbf{A}^{T} are the same, so we can use them to find the same eigenvalues.

For example that the eigenvectors of A and AT are not the same:
$\mathbf{A}=\left[\begin{array}{lll}2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2\end{array}\right], \mathbf{A}^{\mathrm{T}}=\left[\begin{array}{ccc}2 & 1 & 1 \\ -3 & -2 & -3 \\ 1 & 1 & 2\end{array}\right]$

They have the same eigenvalues which are $\lambda_{1}=0, \lambda_{2}=\lambda_{3}=1$, but the eigenvectors are different.
Eigenvectors of A are $\left\{\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}3 & 1 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]^{\mathrm{T}}\right\}$
Eigenvectors of A^{T} are
$\left.\left\{\begin{array}{lll}-0.3015 & 0.9045 & -0.3015\end{array}\right]^{\mathrm{T}},\left[\begin{array}{llll}-0.1090 & -0.6463 & 0.7553\end{array}\right]^{\mathrm{T}},\left[\begin{array}{llll}0.3736 & -0.8155 & 0.4420\end{array}\right]^{\mathrm{T}}\right\}$
3.
(a)

A has one zero eigenvalue
\therefore nullity $(\mathbf{A})=1$
$\therefore \operatorname{rank}(\mathbf{A})=3-1=2$
(b)
$\operatorname{det}\left(\mathbf{A}^{T} \mathbf{A}\right)=\operatorname{det}\left(\mathbf{A}^{T}\right) \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}^{T}\right) \cdot(-1) \cdot 0 \cdot 1=0$
(c)
$\mathbf{A}^{T} \mathbf{A}$ is 3 by 3 .
$\operatorname{rank}\left(\mathbf{A}^{T} \mathbf{A}\right)=\operatorname{rank}(\mathbf{A})=2$
\therefore One eigenvalue is 0 . The other two are unknown.
(d)

Let λ be the eigenvalue of \mathbf{A}
$\Rightarrow \mathbf{A x}=\lambda \mathbf{x}$
$\Rightarrow \mathbf{A}^{2} \mathbf{x}=\mathbf{A} \mathbf{A x}=\mathbf{A} \lambda \mathbf{x}=\lambda \mathbf{A x}=\lambda^{2} \mathbf{x}$
\Rightarrow Eigenvalue of \mathbf{A}^{2} is $\lambda^{2}---(1)$
Let λ be the eigenvalue of \mathbf{A}
$\Rightarrow \mathbf{A x}=\lambda \mathbf{x}$
$\Rightarrow \mathbf{A x}+\mathbf{x}=\lambda \mathbf{x}+\mathbf{x}$
$\Rightarrow(\mathbf{A}+\mathbf{I}) \mathbf{x}=(\lambda+1) \mathbf{x}$
\Rightarrow Eigenvalue of $\mathbf{A}+\mathbf{I}$ is $\lambda+1---$ (2)
Let λ be the eigenvalue of \mathbf{A}
$\Rightarrow \mathbf{A x}=\lambda \mathbf{x}$
$\Rightarrow \mathbf{A}^{-1}(\mathbf{A x})=\mathbf{A}^{-1}(\lambda \mathbf{x})$
$\Rightarrow \mathbf{x}=\lambda \mathbf{A}^{-1} \mathbf{x}$
$\Rightarrow \mathrm{A}^{-1} \mathbf{x}=\lambda^{-1} \mathbf{x}$
\Rightarrow Eigenvalue of \mathbf{A}^{-1} is $\lambda^{-1}---(3)$
Based on (1)(2)(3)
\Rightarrow Answer $=0.5,1,0.5$
4.
(a)
$\mathbf{A x}=\lambda \mathbf{x}$
$\Rightarrow(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0$
$\Rightarrow|\mathbf{A}-\lambda \mathbf{I}|=0$
We can find the eigenvalues which are $\lambda_{1}=1$ and $\lambda_{2}=c-0.6$
And, the eigenvectors are $\mathbf{x}_{1}=\left[\begin{array}{ll}1-c & 0.6\end{array}\right]^{\mathrm{T}}$ and $\mathbf{x}_{2}=\left[\begin{array}{ll}1 & -1\end{array}\right]^{\mathrm{T}}$
(b)

When $c=1.6, \mathrm{~A}=\left[\begin{array}{cc}0.4 & -0.6 \\ 0.6 & 1.6\end{array}\right]$, and $\lambda_{1}=\lambda_{2}=1$
$\Rightarrow(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0$
$\Rightarrow\left[\begin{array}{cc}-0.6 & -0.6 \\ 0.6 & 0.6\end{array}\right] \mathbf{x}=0$
$\Rightarrow \mathbf{x}=\left[\begin{array}{ll}1 & -1\end{array}\right]^{\mathrm{T}}$
\therefore all solutions to $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0$ are multiples of $\mathbf{x}=\left[\begin{array}{ll}1 & -1\end{array}\right]^{\mathrm{T}}$
(c)

When $c=0.8, \mathrm{~A}=\left[\begin{array}{ll}0.4 & 0.2 \\ 0.6 & 0.8\end{array}\right]$, and $\lambda_{1}=1$ and $\lambda_{2}=0.2$

We diagonalize \mathbf{A} first first
$\Rightarrow \mathbf{A}=\mathbf{S} \boldsymbol{\Lambda} \mathbf{S}^{-1}$
$\because \mathbf{A}^{\mathrm{n}}=\mathbf{S} \mathbf{\Lambda}^{\mathrm{n}} \mathbf{S}^{-1}$
$\Rightarrow \lim _{n \rightarrow \infty} \mathbf{A}^{\mathrm{n}}=\lim _{n \rightarrow \infty} \mathbf{S} \mathbf{\Lambda}^{\mathrm{n}} \mathbf{S}^{-1}=\lim _{n \rightarrow \infty} \mathbf{S}\left[\begin{array}{cc}1^{\mathrm{n}} & 0 \\ 0 & 0.2^{\mathrm{n}}\end{array}\right] \mathbf{S}^{-1} \simeq \mathbf{S}\left[\begin{array}{cc}1^{\mathrm{n}} & 0 \\ 0 & 0\end{array}\right] \mathbf{S}^{-1}$
$\left[\begin{array}{ll}1 & 3\end{array}\right]^{\mathrm{T}}$ is the eigenvector corresponding to $\lambda_{1}=1$
$\left[\begin{array}{ll}1 & -1\end{array}\right]^{\mathrm{T}}$ is the eigenvector corresponding to $\lambda_{2}=0.2$
$\therefore \mathbf{A}^{\infty}=\frac{1}{4}\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]$
5.
(a)
$\left[\begin{array}{l}G_{k+2} \\ G_{k+1}\end{array}\right]=\left[\begin{array}{cc}1 / 2 & 1 / 2 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}G_{k+1} \\ G_{k}\end{array}\right]$
Eigenvalues and eigenvectors of \mathbf{A} are $1,-0.5$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -2\end{array}\right]$
(b)
$\mathbf{A}=\mathbf{S} \boldsymbol{\Lambda} \mathbf{S}^{-1}=\left[\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -0.5\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right]^{-1}$
$\lim _{n \rightarrow \infty} \mathbf{A}^{n}=\left[\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right]\left[\begin{array}{cc}\lim _{n \rightarrow \infty} 1^{n} & 0 \\ 0 & \lim _{n \rightarrow \infty}(-0.5)^{n}\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right]^{-1}$
$=\left[\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right]^{-1}=\left[\begin{array}{cc}2 / 3 & 1 / 3 \\ 2 / 3 & 1 / 3\end{array}\right]$
(c)
$\lim _{k \rightarrow \infty}\left[\begin{array}{l}G_{k+2} \\ G_{k+1}\end{array}\right]=\lim _{n \rightarrow \infty} \mathbf{A}^{n}\left[\begin{array}{l}G_{1} \\ G_{0}\end{array}\right]=\left[\begin{array}{ll}2 / 3 & 1 / 3 \\ 2 / 3 & 1 / 3\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}2 / 3 \\ 2 / 3\end{array}\right]$
6.

Substitute $1 \mathbf{A}=\mathbf{S} \boldsymbol{\Lambda} \mathbf{S}^{-1}$ into $(\mathbf{A}-\lambda \mathbf{I})$
$\Rightarrow(\mathbf{A}-\lambda \mathbf{I})=\left(\mathbf{S} \boldsymbol{\Lambda} \mathbf{S}^{-1}-\lambda \mathbf{I}\right)=\mathbf{S}(\boldsymbol{\Lambda}-\lambda \mathbf{I}) \mathbf{S}^{-1}$
$\Rightarrow\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right)\left(\mathbf{A}-\lambda_{2} \mathbf{I}\right)\left(\mathbf{A}-\lambda_{3} \mathbf{I}\right) \cdots\left(\mathbf{A}-\lambda_{n} \mathbf{I}\right)$
$=\mathbf{S}\left[\begin{array}{llll}0 & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right] \mathbf{S}^{-1} \mathbf{S}\left[\begin{array}{cccc}\lambda_{1} & & & \\ & 0 & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right] \mathbf{S}^{-1} \cdots \mathbf{S}\left[\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & 0\end{array}\right] \mathbf{S}^{-1}$
$=\mathbf{S}\left[\begin{array}{llll}0 & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]\left[\begin{array}{llll}\lambda_{1} & & & \\ & 0 & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right] \cdots\left[\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & 0\end{array}\right] \mathbf{S}^{-1}$
$=0$

Then $p(\mathbf{A})=$ zero matrix , which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices approaching A.)

