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Consider the equation 0 0

 nullity( ) = number of zero eigenvalues of 
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0 1 0 1
~    rank( )=2

1 0 0 0 0 0

0 1 0 1 0 0 0 0

 Expect that 0

1 0 1 0
1 0 1 0 1 0

0 1 0 1
det ( - )= (1 ) 0 1 0 11 0 1

1 0 1 0
1 0 1 1 0 1

0 1 0 1
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r approach:

Observe that 2

2 0

0,2

nullity( )=2

 has two zero eigenvalues
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2.

Use characteristic polynomial to prove it

( ) [( )]

( ) [( )] ( ) 0

The characteristic polynomials of  and  are the same , 

so we can use them to find the same eigenvalues.

For e
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1 2 3

xample that the eigenvectors of A and AT are not the same:

2 3 1 2 1 1

1 2 1  , = -3 -2 -3

1 3 2 1 1 2

They have the same eigenvalues which are 0 , 1 , but the eigenvectors are differe  
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nt.

Eigenvectors of A are 1 1 1  , 3 1 0  , 1 0 1

Eigenvectors of A  are 

-0.3015 0.9045 -0.3015  , -0.1090 -0.6463 0.7553  , 0.3736 -0.8155 0.4420



 

 



3.

( )

 has one zero eigenvalue

nullity( )=1

rank( )=3-1=2

( )

det( ) det( )det( ) det( ) ( 1) 0 1 0

( )

 is 3 by 3.

rank( ) rank( )=2

One eigenvalue is 0. The other two are unknown.
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 eigenvalue of 

Eigenvalue of  is (1)

Let  be the eigenvalue of 

1

Eigenvalue of  is 1 (2)

Let  be the eigenvalue of 

(
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A x AAx = A x Ax x

A
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Ax x x x

(A + I)x = ( + )x

A + I

A

Ax x

A A
-1

-1

-1 1

1 1

) ( )

=

A

Eigenvalue of  is (3)

Based on (1)(2)(3)

Answer = 0.5, 1, 0.5











 





 

 



x A x

x A x

x x

A

 

 



   

1 2

T T

1 2

1 2

4.

( )

( ) 0

0

We can find the eigenvalues which are 1 and 0.6

And , the eigenvectors are 1 0.6  and 1 1

( )

0.4 0.6
When 1.6 , A=  , and 1

0.6 1.6

( ) 0

0.6 0.
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n n 1

6
0

0.6 0.6

1 1

all solutions to ( ) 0 are multiples of 1 1

( )

0.4 0.2
When 0.8 , A=  , and 1 and 0.2

0.6 0.8

We diagonalize  first first
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n n
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n n

1 1

n

T

1
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2

1 0 1 0
lim

0 0.2 0 0

1 3  is the eigenvector corresponding to 1

1 1  is the eigenvector corresponding to 0.2

1 11

3 34
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5.

( )

1/ 2 1/ 2

1 0

1 1
Eigenvalues and eigenvectors of  are 1, -0.5 and ,  

1 -2

( )

1 1 1 0 1 1

1 2 0 0.5 1 2

lim1 01 1
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1 0

1 1

1 20.5)

1 1 1 0 1 1 2 / 3 1/ 3

1 2 0 0 1 2 2 / 3 1/ 3

( )

2 / 3 1/ 3 1 2 / 3
lim lim

2 / 3 1/ 3 0 2 / 3
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6.

Substitute 1   into ( )

( ) ( ) ( )

( )( )( ) ( )
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A I SΛS I S Λ I S

A I A I A I A I

S S S S S S

S

1

2 1

0

0

Then ( ) zero matrix , which is the Cayley-Hamilton Theorem.

(If A is not diagonalizable , one proof is to take a sequence of diagonalizable matrices

approaching A.)
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