Solutions to Homework 12

1.

(a) False
$\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], \lambda=1,1, \mathbf{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0\end{array}\right]$
(b) True

Suppose $\mathbf{A x} \mathbf{x}_{1}=\lambda_{1} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}=\lambda_{2} \mathbf{x}_{2}$
$\Rightarrow \mathbf{x}_{2}{ }^{\mathrm{T}} \mathbf{A x} \mathbf{x}_{1}=\lambda_{1} \mathbf{x}_{2}{ }^{\mathrm{T}} \mathbf{x}_{1}=0$
$\mathbf{x}_{1}{ }^{\mathbf{T}} \mathbf{A} \mathbf{x}_{2}=\lambda_{2} \mathbf{x}_{1}{ }^{\mathrm{T}} \mathbf{x}_{2}=0 \quad$ (orthogonal eigenvectors)
$\Rightarrow\left(\mathbf{x}_{2}{ }^{\mathbf{T}} \mathbf{A} \mathbf{x}_{1}\right)^{\mathrm{T}}=0=\mathbf{x}_{1}{ }^{\mathrm{T}} \mathbf{A} \mathbf{x}_{2}$
$\Rightarrow \mathbf{x}_{1}{ }^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{x}_{2}=\mathbf{x}_{1}{ }^{\mathrm{T}} \mathbf{A} \mathbf{x}_{2}$
$\Rightarrow \mathbf{A}=\mathbf{A}^{\mathrm{T}}$
(c) True

Symmetric matrices are orthogonally diagonalizable.
$\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{-1}$, where \mathbf{Q} is an orthogonal matrix, i.e., $\mathbf{Q}^{\mathrm{T}}=\mathbf{Q}^{-1}$
$\Rightarrow \mathbf{A}^{-1}=\left(\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{-1}\right)^{-1}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{-1}$
$\left(\mathbf{A}^{-1}\right)^{\mathrm{T}}=\left(\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{-1}\right)^{\mathrm{T}}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\mathrm{T}}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}=\mathbf{A}^{-1}$
(d) False
$\mathbf{A}=\left[\begin{array}{ccc}2 & -2 & 0 \\ -2 & -1 & 3 \\ 0 & 3 & 3\end{array}\right]$
$\Rightarrow \lambda=-3.2151,2.2595,4.9556$
$\mathbf{S}=\left[\begin{array}{ccc}0.3265 & 0.8794 & 0.3466 \\ 0.8512 & -0.1141 & -0.5122 \\ -0.4109 & 0.4623 & -0.7858\end{array}\right]$ (Not symmetric.)
$\operatorname{det}(\mathbf{A}) \neq 0 \Rightarrow$ invertible
$\mathbf{A}^{\mathrm{T}} \mathbf{A}=\mathbf{I} \Rightarrow$ orthogonal
$\mathbf{A}^{2} \neq \mathbf{A} \Rightarrow \mathbf{A}$ isn't a projection matrix
\mathbf{A} is obtained by exchaging rows of the identity matrix \Rightarrow permutation
\mathbf{A} is real symmetric $\Rightarrow \mathbf{A}$ can be orthogonal diagonalized, $\mathbf{A}=\mathbf{S} \boldsymbol{\Lambda} \mathbf{S}^{-1}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\mathrm{T}}$
\mathbf{A} is the permutation matrix $\Rightarrow \mathbf{A}$ doesn't exsist LU factorization
$\mathbf{A}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\mathbf{Q R} \Rightarrow A$ exsists $Q R$ factorization
$\operatorname{det}(\mathbf{B})=0 \Rightarrow \mathbf{B}$ isn't invertible
$\mathbf{B}^{\mathrm{T}} \mathbf{B} \neq \mathbf{I} \Rightarrow \mathbf{B}$ isn't orthogonal
$\mathbf{B}^{2}=\mathbf{B} \Rightarrow$ projection
\mathbf{B} isn't obtained by exchaging rows of the identity matrix $\Rightarrow \mathbf{B}$ isn't a permutation matrix
\mathbf{B} is real symmetric $\Rightarrow \mathbf{B}$ can be orthogonal diagonalized, $\mathbf{B}=\mathbf{S} \boldsymbol{\Lambda} \mathbf{S}^{-1}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\mathrm{T}}$

Rank of \mathbf{B} is $1 \Rightarrow \mathbf{B}$ doesn't exsist LU factorization
\mathbf{B} doesn't have independent columns $\Rightarrow \mathbf{B}$ doesn't exsist QR factorization
3.
(a)
$\mathbf{x}^{\mathrm{T}} \mathbf{A x}=(\mathbf{A x})^{\mathrm{T}} \mathbf{x}=\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{x}=-\mathbf{x}^{\mathrm{T}} \mathbf{A x}$
$\Rightarrow 2 \mathbf{x}^{\mathrm{T}} \mathbf{A x}=0$
$\Rightarrow \mathbf{x}^{\mathrm{T}} \mathbf{A x}=0$
(b)

Let \mathbf{z} be an eigenvector of \mathbf{A}, assume $\mathbf{z}=\mathbf{x}+i \mathbf{y}, \mathbf{x}, \mathbf{y} \in R$
$\overline{\mathbf{z}}^{-\mathbf{T}} \mathbf{A} \mathbf{z}=\lambda \mathbf{z}^{-\mathbf{T}} \mathbf{z}=\lambda\|\mathbf{z}\|^{2}---(1)$
Also,
${ }_{\mathbf{z}}{ }^{\mathbf{T}} \mathbf{A} \mathbf{z}=(\mathbf{x}-i \mathbf{y})^{T} \mathbf{A}(\mathbf{x}+i \mathbf{y})=\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}+i \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{y}-i \mathbf{y}^{\mathrm{T}} \mathbf{A} \mathbf{x}+\mathbf{y}^{\mathrm{T}} \mathbf{A} \mathbf{y}=i\left(\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{y}-\mathbf{y}^{\mathrm{T}} \mathbf{A} \mathbf{x}\right)--(2)$
(1) $=(2)$
$\Rightarrow \lambda$ is pure imaginary.
(c)
λ 's are the roots of $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
\therefore pairs of λ : ib,-ib
$\Rightarrow \operatorname{det}(\mathbf{A})=\lambda_{1} \cdots \lambda_{n} \geq 0$
4.
$\operatorname{det} \mathbf{A}_{k}>0 \Rightarrow \mathbf{A}$ is positive definite
$\operatorname{det} \mathbf{A}_{1}=a>0$
$\operatorname{det} \mathbf{A}_{2}=a^{2}-1=(a+1)(a-1)>0 \Rightarrow a>1$ or $a<-1$
$\operatorname{det} \mathbf{A}_{3}=a^{3}-2 a+2>0 \Rightarrow a>-1.7$
\therefore If $a>1, \mathbf{A}$ is positive definite
$\operatorname{det} \mathbf{B}_{k}>0 \Rightarrow \mathbf{B}$ is positive definite
$\operatorname{det} \mathbf{B}_{1}=1>0$
$\operatorname{det} \mathbf{B}_{2}=b-4>0 \Rightarrow b>4$
$\operatorname{det} \mathbf{B}_{3}=-4 b+12>0 \Rightarrow b<3$
$\Rightarrow b>4 \rightarrow \leftarrow b<3$
\therefore It is impossible that \mathbf{B} is positive definite
5.
(a)

All $\lambda_{\mathrm{i}}>0$
$\therefore \operatorname{det}(\mathbf{A})=\lambda_{1} \cdots \lambda_{n} \neq 0$
$\therefore \mathbf{A}$ is non-singular.
(b)

All projection matrices except \mathbf{I} are singular.
(c)

Eigenvalues of a diagonal matrix are its diagonal entries.
(d)

Positive determinant does not imply it's eigenvalues are all positive.
6.
$z=4 x^{2}+12 x y+c y^{2}=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}4 & 6 \\ 6 & c\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
Assume the eigenvalues of $\left[\begin{array}{ll}4 & 6 \\ 6 & c\end{array}\right]$ are λ_{1} and λ_{2}
\Rightarrow If $0<\lambda_{1}<\lambda_{2}$, the graph of z is a bowl
$\Rightarrow \operatorname{det}\left(\left[\begin{array}{ll}4 & 6 \\ 6 & c\end{array}\right]\right)=4 c-36=\lambda_{1} \lambda_{2}>0$
$\Rightarrow c>9$
\Rightarrow And if $\lambda_{1}<0<\lambda_{2}$, the graph of z has a saddle point
$\Rightarrow \operatorname{det}\left(\left[\begin{array}{ll}4 & 6 \\ 6 & c\end{array}\right]\right)=4 c-36=\lambda_{1} \lambda_{2}<0$
$\Rightarrow c<9$

When $c=9$, the graph of $z=(2 x+3 y)^{2}$ is a "trough" staying at zero along the line $2 x+3 y=0$

