HW 3 solution

1.

(a)

Assume the inverse of I-cA is I-dA
$=>(\mathrm{I}-\mathrm{cA})(\mathrm{I}-\mathrm{dA})=\mathrm{I}$
$=>\mathrm{I}-\mathrm{dA}-\mathrm{cA}+\mathrm{cdA}{ }^{2}=\mathrm{I}-(\mathrm{c}+\mathrm{d}-\mathrm{cd}) \mathrm{A}=\mathrm{I}$
=>c+d-cd=0
$\Rightarrow>\mathrm{d}=\mathrm{c} /(\mathrm{c}-1)$
$\Rightarrow(\mathrm{I}-\mathrm{cA})^{-1}=\mathrm{I}-\frac{\mathrm{c}}{\mathrm{c}-1} \mathrm{~A}, \mathrm{c} \neq 1$
(b)
$\mathbf{E}=\left[\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1\end{array}\right]_{n \times n}, \mathbf{E}^{2}=\left[\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1\end{array}\right]\left[\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1\end{array}\right]=\left[\begin{array}{ccc}\mathrm{n} & \cdots & \mathrm{n} \\ \vdots & \ddots & \vdots \\ \mathrm{n} & \cdots & \mathrm{n}\end{array}\right]=\mathbf{n E}$
Assume the inverse of I-E is I-dE
$=>(\mathrm{I}-\mathrm{E})(\mathrm{I}-\mathrm{dE})=\mathrm{I}$
$=>\mathrm{I}-\mathrm{dE}-\mathrm{E}+\mathrm{dE}{ }^{2}=\mathrm{I}-(\mathrm{d}+1-\mathrm{nd}) \mathrm{E}=\mathrm{I}$
=>d+1-nd=0
=>d=1/(n-1)
$\Rightarrow(I-E)^{-1}=I-\frac{1}{n-1} E, n \neq 1$
2.

Given $B^{T}=-B$ and $A=(I+B)(I-B)^{-1}$

$$
\begin{aligned}
A^{T} & =\left[(I+B)(I-B)^{-1}\right]^{T} \\
& =\left[(I-B)^{T}\right]^{-1}(I+B)^{T} \\
& =\left(I^{T}-B^{T}\right)^{-1}\left(I^{T}+B^{T}\right) \\
& =(I+B)^{-1}(I-B) \\
& =\left[(I-B)^{-1}(I+B)\right]^{-1}
\end{aligned}
$$

$$
\left[\begin{array}{l}
\text { Proof : }(I-B)^{-1}(I+B)=(I+B)(I-B)^{-1} \\
(I-B)^{-1}(I+B)=(I-B)^{-1}+(I-B)^{-1} B \text { and }(I+B)(I-B)^{-1}=(I-B)^{-1}+B(I-B)^{-1} \\
\Rightarrow(I-B)^{-1} B=\left[B^{-1}(I-B)\right]^{-1}=\left[B^{-1}-I\right]^{-1}=\left[(I-B) B^{-1}\right]^{-1}=B(I-B)^{-1}
\end{array}\right]
$$

$\therefore A^{T}=\left[(I-B)^{-1}(I+B)\right]^{-1}=\left[(I+B)(I-B)^{-1}\right]^{-1}=A^{-1} \quad$ Q．E．D．
3.

The solution is based on
http：／／ccjou．twbbs．org／blog／？p＝6507（每週問題 March 8，2010）
$\left[\begin{array}{cccc|c}1 & 2 & 4 & 17 & 1 \\ 3 & 6 & -12 & 3 & 2 \\ 2 & 3 & -3 & 2 & 3 \\ 0 & 2 & -2 & 6 & 4\end{array}\right] \sim\left[\begin{array}{cccc|c}1 & 2 & 4 & 17 & 1 \\ \underline{3} & 0 & -24 & -48 & 2 \\ \underline{2} & -1 & -11 & -32 & 3 \\ \underline{0} & 2 & -2 & 6 & 4\end{array}\right] \sim\left[\begin{array}{cccc|c}1 & 2 & 4 & 17 & 1 \\ \underline{2} & -1 & -11 & -32 & 3 \\ \underline{3} & 0 & -24 & -48 & 2 \\ 0 & 2 & -2 & 6 & 4\end{array}\right] \sim$
$\left[\begin{array}{ccccc}1 & 2 & 4 & 17 & 1 \\ \underline{2} & -1 & -11 & -32 & 3 \\ \underline{3} & \underline{0} & -24 & -48 & 2 \\ \underline{0} & -\underline{2} & -24 & -58 & 4\end{array}\right] \sim\left[\begin{array}{cccc|c}1 & 2 & 4 & 17 & 1 \\ \underline{2} & -1 & -11 & -32 & 3 \\ \underline{3} & \underline{0} & -24 & -48 & 2 \\ \underline{0} & -\underline{2} & \underline{1} & -10 & 4\end{array}\right]$
$\therefore P=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], L=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & -2 & 1 & 1\end{array}\right], \mathrm{U}=\left[\begin{array}{cccc}1 & 2 & 4 & 17 \\ 0 & -1 & -11 & -32 \\ 0 & 0 & -24 & -48 \\ 0 & 0 & 0 & -10\end{array}\right]$
4.
$A=L U$ cne be obtained by Gaussian elimination and each step of row operation can be written as elimination matrix E

Therefore, $L=E_{1} \times E_{2} \cdots E_{n}$ (We do n times row operation)
$\Rightarrow L^{-1}=E_{n}^{-1} \times E_{n-1}^{-1} \cdots E_{1}^{-1}$
E^{-1} is adding negative sign to the non-diagonal entries of E.
Therefore , it still has integral entries.
So , L^{-1} is still an integral matrix.

On the other hand, we can write $A^{T}=U^{T} L^{T}$.
U^{T} is each step of row operation on A^{T}, it can be represented
as $E_{1}^{T} \times E_{2}{ }^{T} \cdots E_{n}{ }^{T}$.
For the same reason, $\left(U^{T}\right)^{-1}$ is an integral matrix , too.
Therefore, U^{-1} is also an integral matrix.
$A^{-1}=U^{-1} L^{-1}$
Both U^{-1} and L^{-1} are integral matrices, so we can conclude that A^{-1} is also an integral matrix.

Ex:
$A=\left[\begin{array}{ccc}1 & 0 & 0 \\ -9 & 1 & 0 \\ 100 & 57 & 1\end{array}\right]\left[\begin{array}{ccc}1 & -73 & 4 \\ 0 & 1 & 8 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & -73 & 4 \\ -9 & 658 & -28 \\ 100 & -7243 & 857\end{array}\right]$
$\Rightarrow A^{-1}=\left[\begin{array}{ccc}361102 & 33589 & -588 \\ 4913 & 457 & -8 \\ -613 & -57 & 1\end{array}\right]$
5.

A is symmetric and possesses an LDU factorization
=> A=LDU
$\Rightarrow>\mathrm{A}^{\mathrm{T}}=(\mathrm{LDU})^{\mathrm{T}}=\mathrm{U}^{\mathrm{T}} \mathrm{D}^{\mathrm{T}} \mathrm{L}^{\mathrm{T}}=\mathrm{U}^{\mathrm{T}} \mathrm{DL}^{\mathrm{T}} \quad$ (The off-diagonal elements of D are zeros. $\therefore \mathrm{D}^{\mathrm{T}}=\mathrm{D}$)
A is symmetric
$\Rightarrow A^{T}=A$
$\Rightarrow U^{T} D^{T}=L D U$
$=>\mathrm{L}^{\mathrm{T}}=\mathrm{U}$
=>A=LDL ${ }^{\text {T }}$
6.

Use Gauss-Jordan method to find the inverce of $\left[\begin{array}{ll}A & 0 \\ B & C\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc|cc}A & 0 & I_{m} & 0 \\ B & C & 0 & I_{n}\end{array}\right] \xrightarrow{R_{1}\left(A^{-1}\right)}\left[\begin{array}{cc|cc}I_{m} & 0 & A^{-1} & 0 \\ B & C & 0 & I_{n}\end{array}\right] \xrightarrow{R_{12}(-B)}\left[\begin{array}{cc|cc}I_{m} & 0 & A^{-1} & 0 \\ 0 & C & -B A^{-1} & I_{n}\end{array}\right]$
$\xrightarrow{R_{2}\left(C^{-1}\right)}\left[\begin{array}{cc|cc}I_{m} & 0 & \begin{array}{cc}A^{-1} & 0 \\ 0 & I_{n}\end{array} & -C^{-1} B A^{-1}\end{array} C^{-1}\right]$
\therefore If A and C are invertible, the matrix $\left[\begin{array}{ll}A & 0 \\ B & C\end{array}\right]$ must be invertible and its inverce is $\left[\begin{array}{cc}A^{-1} & 0 \\ -C^{-1} B A^{-1} & C^{-1}\end{array}\right]$

