HW 3 solution

1. (a) Assume the inverse of I-cA is I-dA =>(I-cA)(I-dA)=I $=>I-dA-cA+cdA^2=I-(c+d-cd)A=I$ =>c+d-cd=0=>d=c/(c-1) $=>(I-cA)^{-1}=I-\frac{c}{c-1}A, c \neq 1$ (b) $\mathbf{E} = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}_{n \times n}, \ \mathbf{E}^2 = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} n & \cdots & n \\ \vdots & \ddots & \vdots \\ n & \cdots & n \end{bmatrix} = \mathbf{n} \mathbf{E}$ Assume the inverse of I-E is I-dE =>(I-E)(I-dE)=I $=>I-dE-E+dE^2=I-(d+1-nd)E=I$ =>d+1-nd=0=>d=1/(n-1) $=>(I-E)^{-1}=I-\frac{1}{n-1}E, n \neq 1$

2. Given $B^T = -B$ and $A = (I + B)(I - B)^{-1}$

$$A^{T} = \left[(I+B)(I-B)^{-1} \right]^{T}$$
$$= \left[(I-B)^{T} \right]^{-1} (I+B)^{T}$$
$$= (I^{T}-B^{T})^{-1} (I^{T}+B^{T})$$
$$= (I+B)^{-1} (I-B)$$
$$= \left[(I-B)^{-1} (I+B) \right]^{-1}$$

$$\begin{bmatrix} \operatorname{Proof} : (I-B)^{-1}(I+B) = (I+B)(I-B)^{-1} \\ (I-B)^{-1}(I+B) = (I-B)^{-1} + (I-B)^{-1}B \text{ and } (I+B)(I-B)^{-1} = (I-B)^{-1} + B(I-B)^{-1} \\ \Rightarrow (I-B)^{-1}B = \begin{bmatrix} B^{-1}(I-B) \end{bmatrix}^{-1} = \begin{bmatrix} B^{-1} - I \end{bmatrix}^{-1} = \begin{bmatrix} (I-B)B^{-1} \end{bmatrix}^{-1} = B(I-B)^{-1}$$

:
$$A^{T} = [(I-B)^{-1}(I+B)]^{-1} = [(I+B)(I-B)^{-1}]^{-1} = A^{-1}$$
 Q.E.D.

3.

The solution is based on

http://ccjou.twbbs.org/blog/?p=6507 (每週問題 March 8, 2010)

1	2	4	17	1]	[1	. 2	2	4	17	1		1	2	4	17	1]	
3	6	-12	3	2	3	<u> </u>) -	24	-48	2		<u>2</u>	-1	-11	-32	3	
2	3	-3	2	3	2	2 -1	1 -	11	-32	3	~	<u>3</u>	0	-24	-48	2	~
0	2	-2	6	4		2		-2	6	4		<u>0</u>	2	-2	6	4	
1	2	4	17	/ 1]	1	2	4	17	7	1]						
<u>2</u>	-1	-11	-32	2 3		<u>2</u>	-1	-1	1 -3	2	3						
<u>3</u>	<u>0</u>	-24	-48	8 2	~	<u>3</u>	<u>0</u>	-24	4 -4	8	2						
<u>0</u>	- <u>2</u>	-24	-58	8 4		<u>0</u>	- <u>2</u>	<u>1</u>	-1	0	4						
∴ P	Γ	1 0	0	0]		[1	0	0	0]		[1	2	4	4 1	l 7]		
		0 0	1	0		2	1	0	0	. .	0	-1	-1	11 -	32		
	=	0 1	0	0,1	_ =	3	0	1	0, 1) =	0	0	-2	24 -	48		
		0 0	0	1		0	-2	1	1		0	0	(0 -	10		

4.

A = LU cne be obtained by Gaussian elimination and each step of row operation can be written as elimination matrix E

Therefore, $L = E_1 \times E_2 \cdots E_n$ (We do n times row operation) $\Rightarrow L^{-1} = E_n^{-1} \times E_{n-1}^{-1} \cdots E_1^{-1}$

 E^{-1} is adding negative sign to the non-diagonal entries of E. Therefore, it still has integral entries.

So , L^{-1} is still an integral matrix.

On the other hand, we can write $A^T = U^T L^T$. U^T is each step of row operation on A^T , it can be represented as $E_1^T \times E_2^T \cdots E_n^T$. For the same reason, $(U^T)^{-1}$ is an integral matrix, too. Therefore, U^{-1} is also an integral matrix.

 $A^{-1} = U^{-1}L^{-1}$

Both U^{-1} and L^{-1} are integral matrices, so we can conclude that A^{-1} is also an integral matrix.

Ex:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -9 & 1 & 0 \\ 100 & 57 & 1 \end{bmatrix} \begin{bmatrix} 1 & -73 & 4 \\ 0 & 1 & 8 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -73 & 4 \\ -9 & 658 & -28 \\ 100 & -7243 & 857 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \begin{bmatrix} 361102 & 33589 & -588 \\ 4913 & 457 & -8 \\ -613 & -57 & 1 \end{bmatrix}$$

5.

A is symmetric and possesses an LDU factorization

=> A=LDU $=>A^{T}=(LDU)^{T}=U^{T}D^{T}L^{T}=U^{T}DL^{T}$ (The off-diagonal elements of D are zeros. $\therefore D^{T}=D$) A is symmetric $=> A^{T}=A$ $=> U^{T}DL^{T}=LDU$ $=>L^{T}=U$ $=>A=LDL^{T}$ Use Gauss-Jordan method to find the inverce of $\begin{bmatrix} A & 0 \\ B & C \end{bmatrix}$

$$\Rightarrow \begin{bmatrix} A & 0 & | I_{m} & 0 \\ B & C & 0 & I_{n} \end{bmatrix} \xrightarrow{R_{1}(A^{-1})} \begin{bmatrix} I_{m} & 0 & | A^{-1} & 0 \\ B & C & 0 & I_{n} \end{bmatrix} \xrightarrow{R_{12}(-B)} \begin{bmatrix} I_{m} & 0 & | A^{-1} & 0 \\ 0 & C & | -BA^{-1} & I_{n} \end{bmatrix}$$
$$\xrightarrow{R_{2}(C^{-1})} \begin{bmatrix} I_{m} & 0 & | A^{-1} & 0 \\ 0 & I_{n} & | -C^{-1}BA^{-1} & C^{-1} \end{bmatrix}$$

 \therefore If *A* and *C* are invertible, the matrix $\begin{bmatrix} A & 0 \\ B & C \end{bmatrix}$ must be invertible and its inverce is $\begin{bmatrix} A^{-1} & 0 \\ -C^{-1}BA^{-1} & C^{-1} \end{bmatrix}$