Solutions to Homework 4

1.

Ans: (a)(d)(e)
(a) A plane passing through the origin.
(b) A plane which does not pass through the origin.
ex.
Let $S=\left\{\left(b_{1}, b_{2}, b_{3}\right) \mid b_{1}=1\right\}$
$v_{1}=(1,2,1) \in S$, but $2 v_{1}=(2,4,2) \notin S$
(c) Three planes formed by three axes.
ex.
Let $S=\left\{\left(b_{1}, b_{2}, b_{3}\right) \mid b_{1} b_{2} b_{3}=0\right\}$
$v_{1}=(1,0,1) \in S$,
$v_{2}=(0,1,0) \in S$
but $v_{1}+v_{2}=(1,1,1) \notin S$
(d) A plane passing through the origin.
(e) A plane passing through the origin.
(f) ex.

Let $S=\left\{\left(b_{1}, b_{2}, b_{3}\right) \mid b_{1} \leq b_{2} \leq b_{3}\right\}$
$v_{1}=(1,2,3) \in S$,
but $-v_{1}=(-1,-2,-3) \notin S$
2.
(a)False
\because The vectors \mathbf{b} don't contain the zero vector.
(b)True

Only the zero matrix has $\mathrm{C}(\mathrm{A})=\{0\}$.
(c) True
$C(2 A)=C(A)$.
(d)False

If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then $C(A)=R^{2}$.
$\Rightarrow A-I=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\Rightarrow C(A-I)=\{0\}$
$\Rightarrow \mathrm{C}(\mathrm{A}) \neq C(A-I)$
3.
(a)

If \mathbf{u} and \mathbf{v} are both in $\mathbf{S + T}$, then $\mathbf{u}=\mathbf{s}_{\mathbf{1}}+\mathbf{t}_{1}$ and $\mathbf{v}=\mathbf{s}_{\mathbf{2}}+\mathbf{t}_{\mathbf{2}}$
Addition:
$\mathbf{u}+\mathbf{v}=\left(\mathrm{s}_{1}+\mathrm{t}_{1}\right)+\left(\mathrm{s}_{2}+\mathrm{t}_{2}\right)=\left(\mathrm{s}_{1}+\mathrm{s}_{2}\right)+\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\because\left(\mathbf{s}_{1}+\mathbf{s}_{2}\right) \in S$ and $\left(\mathbf{t}_{1}+\mathbf{t}_{2}\right) \in \mathbf{T}$
$\therefore \mathbf{u}+\mathbf{v} \in \mathbf{S}+\mathbf{T}$
Scaling:
Let c be a scaler, $\mathrm{c} \in R$
$\mathrm{cu}=\mathrm{c}\left(\mathbf{s}_{\mathbf{1}}+\mathbf{t}_{\mathbf{1}}\right)=\mathrm{cs}_{1}+\mathbf{c t} \mathbf{t}_{1}$
$\because \mathrm{cs}_{1} \in \mathbf{S}$ and $\mathrm{ct}_{1} \in \mathbf{T}$
$\therefore \mathrm{cu} \in \mathbf{S}+\mathbf{T}$
(b)

If \mathbf{S} and \mathbf{T} are different lines, then $\mathbf{S} \cup \mathbf{T}$ is just the two lines but $\mathbf{S}+\mathbf{T}$ is the whole plane that they span.
4.
(a)

We know that the column space of a matrix is formed by the columns, and the columns of A and B are also the columns of X.
$\therefore \mathrm{C}(\mathrm{X})=C(A) \cup C(B)$
(b)
\forall vector $\mathbf{u} \in N(X)$
$\Rightarrow X \mathbf{u}=0$
$\Rightarrow\left[\begin{array}{l}A \\ B\end{array}\right] \mathbf{u}=0$
$\Rightarrow\left[\begin{array}{l}A \mathbf{u} \\ B \mathbf{u}\end{array}\right]=0$
$\Rightarrow \mathbf{u} \in N(A) \cap N(B)$
$\Rightarrow N(X) \subset N(A) \cap N(B)$
\forall vector $\mathbf{v} \in N(A) \cap N(B)$
$\Rightarrow\left[\begin{array}{l}A \mathbf{v} \\ B \mathbf{v}\end{array}\right]=0$
$\Rightarrow\left[\begin{array}{l}A \\ B\end{array}\right] \mathbf{v}=0$
$\Rightarrow X \mathbf{v}=0$
\Rightarrow vector $\mathbf{v} \in N(X)$
$\Rightarrow N(A) \cap N(B) \subset N(X)$
$\because N(A) \cap N(B) \subset N(X)$ and $N(X) \subset N(A) \cap N(B)$
$\therefore N(X)=N(A) \cap N(B)$
5.
$\mathbf{R X}=\left[\begin{array}{c|cccccc}1 & -3 & 0 & 5 & 0 & 0 & 7 \\ 0 & 0 & 1 & -4 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \\ x_{7}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
=>rank of $\mathrm{R}=4$
$=>(7-4)$ free variables $\left(x_{2}, x_{4}, x_{7}\right)$
$\Rightarrow \mathbf{N}=\left[\begin{array}{ccc}3 & -5 & -7 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} \\ 0 & 4 & -3 \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & 0 & -2 \\ 0 & 0 & -1 \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right]$
Note that the free variables are in bold face.
6.
(a)
$\because R$ is m by n of rank r
$\Rightarrow\left[\begin{array}{ll}I & F \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}r \text { by } r & r \text { by }(n-r) \\ (m-r) \text { by } r & (m-r) \text { by }(n-r)\end{array}\right]$
(b)Find the right-inverse B with $R B=I$ if $r=m$.
$\operatorname{rank}(R)=m$
$\Rightarrow R=\left[\begin{array}{ll}I & F\end{array}\right]$
\Rightarrow We can choose a matrix B to let the linear combination of the columns in R form an identity matrix I.
\Rightarrow So it is obvious to show that $B=\left[\begin{array}{l}I \\ 0\end{array}\right]$ where I is m by m and B is n by m.
(c)Find a left-inverse C with $C R=I$ if $r=n$
$\operatorname{rank}(R)=n$
$\Rightarrow R=\left[\begin{array}{l}I \\ 0\end{array}\right], R^{T}=\left[\begin{array}{ll}I & 0\end{array}\right]$
$\Rightarrow R^{T} C^{T}=I$
\Rightarrow We can also choose a matrix C^{T} to let the linear combination of the columns in R^{T} form an identity matrix I.
\Rightarrow So it is obvious to show that $C^{T}=\left[\begin{array}{c}I \\ D^{T}\end{array}\right]$ where I is n by n, D^{T} is an any $(m-n)$ by n matrix .
$\Rightarrow C=\left[\begin{array}{ll}I & D\end{array}\right], C$ is n by m.
(d)
$R^{T}=\left[\begin{array}{cc}I & 0 \\ F^{T} & 0\end{array}\right]$
$\Rightarrow R^{T}$ is n by m, I is r by r and F^{T} is $(n-r)$ by r.
$\Rightarrow\left[\begin{array}{cc}I & 0 \\ F^{T} & 0\end{array}\right] \xrightarrow{R_{12}\left(-F^{T}\right)}\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$
\Rightarrow The reduced row echelon form of $R^{T}=\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]$
(e)
$R^{T} R=\left[\begin{array}{cc}I & F \\ F^{T} & F^{T} F\end{array}\right]$
$\Rightarrow R^{T} R$ is n by n, I is r by r, F^{T} is $(n-r)$ by r and $F^{T} F$ is $(n-r)$ by $(n-r)$.
$\Rightarrow\left[\begin{array}{cc}I & F \\ F^{T} & F^{T} F\end{array}\right] \xrightarrow{R_{12}\left(-F^{T}\right)}\left[\begin{array}{cc}I & F \\ 0 & 0\end{array}\right]$
\Rightarrow The reduced row echelon form of $R^{T} R=\left[\begin{array}{cc}I & F \\ 0 & 0\end{array}\right]$
(f)
\because The reduced row echelon form of $R^{T} R$ is the same as R
\Rightarrow The nullspace matrix N of $R^{T} R$ is the same as R
$\Rightarrow N=\left[\begin{array}{c}-F \\ I\end{array}\right]$
$\therefore N\left(R^{T} R\right)=N(R)$
Q.E.D.

