
Solutions to Homework 4 

1. 

Ans: (a)(d)(e) 

(a) A plane passing through the origin. 

(b) A plane which does not pass through the origin. 

ex.  
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(c) Three planes formed by three axes. 

ex. 
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(d) A plane passing through the origin. 

(e) A plane passing through the origin. 

(f) ex.  
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2.

( )False

The  vectors  don't contain the zero vector.

(b)True

Only  the zero matrix has C(A)= 0 .
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3. 
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(a)

If  and  are both in , then  and 

Addition:

 and 

Scaling:

Let c be a scaler, c
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(b)

If  and  are different lines, then  is just the two lines but

is the whole plane that they span.
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4.

( )

We know that the column space of a matrix is formed by the columns , and the columns of  and 

are also the columns of .
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5. 
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=>rank of R=4 
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6.

( )

 is  by  of rank 

 by  by ( - )

0 0 ( ) by ( ) by ( - )

( )Find the right-inverse  with  if .

( )

 =

We can choose a matrix  to let the linear combination
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 of the columns in  form an 

identity matrix .

So it is obvious to show that  where  is  by  and  is  by  .
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We can  also choose a matrix  to let the linear combination of the columns in  form an 

identity matrix .

So it is obvious to show that  where  is  by  ,  is an any ( - ) by  m
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