Solutions to Homework 5

1.

(a)
$N(A)=\left[\begin{array}{lll}2 & 3 & 1\end{array} 0\right]^{T}$
$\operatorname{rank}(\mathrm{A})=\mathrm{n}-\operatorname{dim} \mathrm{N}(\mathrm{A})=4-1=3$
The complete solution is $\mathbf{x}=t\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 0\end{array}\right], t \in R$.
(b)

Recall the method of finding $\mathrm{N}(\mathrm{A})$ from the reduced echelon form of A .
(If $A \sim\left[\begin{array}{ll}I & F \\ 0 & 0\end{array}\right]$, then $N(A)=\left[\begin{array}{c}-F \\ I\end{array}\right]$)
We can get $\mathrm{A} \sim\left[\begin{array}{cccc}1 & 0 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(c)

A is full colum rank $=>C(A)=R^{3}$
\therefore Any b can be a linear combination of columns of A.
$\therefore A \mathbf{x}=\mathbf{b}$ is solvable for all \mathbf{b}.
2.
(a)

A subspace in $\mathbf{R}^{4}=\left\{\left.\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{1} & x_{1} & x_{1}\end{array}\right]^{T} \right\rvert\, \mathbf{x} \in \mathbf{R}^{4}\right\}$
\Rightarrow Any vectors in this subspace are $\left[\begin{array}{llll}x_{1} & x_{1} & x_{1} & x_{1}\end{array}\right]^{T}=x_{1}\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$
$\Rightarrow x_{1}$ is any constant, so the vectors in this subspace are the linear combinations of $\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$
\therefore The basis is $\left\{\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}\right\}$
(b)

A subspace in $\mathbf{R}^{4}=\left\{\left.\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T} \right\rvert\, x_{1}+x_{2}+x_{3}+x_{4}=0, \mathbf{x} \in \mathbf{R}^{4}\right\}$
\Rightarrow Let $x_{2}=C_{1}, x_{3}=C_{2}, x_{4}=C_{3}$ and $C_{1}, C_{2}, C_{3} \in \mathfrak{R}$
$\Rightarrow x_{1}=-C_{1}-C_{2}-C_{3}$
$\Rightarrow \mathbf{x}=C_{1}\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right]+C_{2}\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]+C_{3}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]$
$\Rightarrow \mathbf{x}$ is the linear combination of $\left\{\left[\begin{array}{llll}-1 & 1 & 0 & 0\end{array}\right]^{T},\left[\begin{array}{llll}-1 & 0 & 1 & 0\end{array}\right]^{T},\left[\begin{array}{llll}-1 & 0 & 0 & 1\end{array}\right]^{T}\right\}$
\therefore The basis is $\left\{\left[\begin{array}{llll}-1 & 1 & 0 & 0\end{array}\right]^{T},\left[\begin{array}{llll}-1 & 0 & 1 & 0\end{array}\right]^{T},\left[\begin{array}{llll}-1 & 0 & 0 & 1\end{array}\right]^{T}\right\}$
(c)

Let $\mathbf{u}_{1}=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]^{T}$ and $\mathbf{u}_{2}=\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right]^{T}$
A subspace in $\mathbf{R}^{4}=\left\{\left.\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T} \right\rvert\, \mathbf{x}^{T} \mathbf{u}_{1}=\mathbf{x}^{T} \mathbf{u}_{2}=0, \mathbf{x} \in \mathbf{R}^{4}\right\}$
\Rightarrow We can rewrite the relation between $\mathbf{x}, \mathbf{u}_{1}$ and \mathbf{u}_{1} as
$\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right]=0$
\Rightarrow This subspace is equal to the left null space of $\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right]$
\Rightarrow The left nullspace matrix $=\left[\begin{array}{cc}1 & 0 \\ -1 & 0 \\ -1 & -1 \\ 0 & 1\end{array}\right]$
\therefore The basis is $\left\{\left[\begin{array}{llll}1 & -1 & -1 & 0\end{array}\right]^{T},\left[\begin{array}{llll}0 & 0 & -1 & -\end{array}\right]^{T}\right\}$
(d)

A subspace in $\mathbf{R}^{4}=\left\{\left.\mathbf{x}=\left[\begin{array}{llll}a & b & c & d\end{array}\right]^{T} \right\rvert\, c=a+b\right.$ and $\left.d=c-b, \mathbf{x} \in \mathbf{R}^{4}\right\}$
$\Rightarrow \mathbf{x}=\left[\begin{array}{llll}a & b & c & d\end{array}\right]^{T}=\left[\begin{array}{llll}a & b & a+b & a\end{array}\right]^{T}=a \times\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right]+b \times\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]$
\therefore The basis is $\left\{\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right]^{T},\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]^{T}\right\}$
3.

$\begin{array}{lllll}\mathrm{P}_{1} & \mathrm{P}_{2} & \mathrm{P}_{3} & \mathrm{P}_{4} & \mathrm{P}_{5}\end{array}$
To show the independence of these P 's, assume $c_{1} P_{1}+\ldots c_{5} P_{5}=0$
Focus on $\mathrm{P}_{1}, \mathrm{p}_{33}=1$ but other p_{33} 's are zero, so c_{1} must be zero.
Focus on $\mathrm{P}_{2}, \mathrm{p}_{12}=1$ but other p_{12} 's are zero(except P_{1}, but $\mathrm{c}_{1}=0$ already), so c_{2} must be zero.
Focus on $\mathrm{P}_{3}, \mathrm{p}_{22}=1$ but other p_{22} 's are zero, so c_{3} must be zero.
Focus on $\mathrm{P}_{4}, \mathrm{p}_{11}=1$ but other p_{11} 's are zero, so c_{4} must be zero.
Focus on $\mathrm{P}_{5}, \mathrm{p}_{32}=1$ but other p_{32} 's are zero(except P_{4}, but $\mathrm{c}_{4}=0$ already), so c_{5} must be zero.
$\because \mathrm{c}_{1}=\ldots=\mathrm{c}_{5}=0 \therefore$ P's are independent.
Let Q be a linear combination of these P's.
\because There is an ONE in each row and each column of these P's.
\therefore Summations of rows and columns of Q will be all equal.
\therefore P's can be a basis for matrices with this property.
4.
(a)

Ans: $\left[\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 2\end{array}\right]$
The column space is span $\left.\left\{\begin{array}{lll}1 & 1 & 0\end{array}\right]^{T},\left[\begin{array}{lll}0 & 0 & 2\end{array}\right]^{T}\right\}$
The row space is span $\left\{\left[\begin{array}{ll}1 & 0\end{array}\right]^{T},\left[\begin{array}{ll}0 & 2\end{array}\right]^{T}\right\}$ which contains $\left\{\left[\begin{array}{ll}1 & 2\end{array}\right]^{T},\left[\begin{array}{ll}2 & 3\end{array}\right]^{T}\right\}$
(b)

Ans: $\left[\begin{array}{lll}1 & 1 & -1 \\ 1 & 1 & -1 \\ 3 & 3 & -3\end{array}\right]$
The basis of column space is $\left.\left\{\begin{array}{lll}1 & 1 & 3\end{array}\right]^{T}\right\}$
The basis of null space is $\left\{\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{T},\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{T}\right\}$
(c)

Dimention of null space $=$ the number of columns - rank
Dimention of left null space $=$ the number of rows - rank
\Rightarrow the number of rows $+1=$ the number of columns
Ans: $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 1 \\ 1 & 3 & 1 \\ 0 & 2 & 2\end{array}\right]$
(d)
$\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ a & b\end{array}\right]=0$
$\Rightarrow a=-1, b=-\frac{1}{2}$
Ans: $\left[\begin{array}{cc}2 & 1 \\ -1 & -\frac{1}{2}\end{array}\right]$
(e)

Row space $=$ column space \Rightarrow The matrix must be square
\Rightarrow
Dimention of null space $=$ the number of columns - rank
Dimention of left null space $=$ the number of rows - rank
But the matrix is square and dimention of column space $=$ dimention of row space.
\therefore This matrix is impossible

5.

$\operatorname{dim} \mathrm{N}(\mathrm{A})=2$ (There are two homogeneous solutions)
\therefore A basis for the null space can be $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$. ----(c)
A must be 4 by 3 .
From the rank theorom, $\operatorname{rank}(A)=n-\operatorname{dim} N(A)=1$
Since $\operatorname{dim} C(A)=\operatorname{rank}(A)=1$, a basis for the column space of A contains only one vector.
$\because \mathrm{Ax}=\left[\begin{array}{llll}1 & 2 & 1 & 1\end{array}\right]^{\mathrm{T}}$ is sovable $\therefore\left[\begin{array}{llll}1 & 2 & 1 & 1\end{array}\right]^{\mathrm{T}}$ is in $\mathrm{C}(\mathrm{A})$
\therefore A basis for the column space can be $\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right]$----(b)
We know $N(A)=\left[\begin{array}{ll}2 & 1 \\ \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}\end{array}\right]$, free variables are in bold face.
Recall the method of finding $\mathrm{N}(\mathrm{A})$ from the reduced echelon form of A .
(If $A \sim\left[\begin{array}{ll}I & F \\ 0 & 0\end{array}\right]$, then $N(A)=\left[\begin{array}{c}-F \\ I\end{array}\right]$)
We can get $A \sim\left[\begin{array}{ccc}1 & -2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]---$-(a)
6.

The reduced row echelon form of A is $\left[\begin{array}{ccccc}1 & 3 & 0 & -2 & -1 \\ 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
\Rightarrow From the reduced row echelon form, we can get the row space and the null space of A.
$\therefore \operatorname{span}\left\{\left[\begin{array}{lllll}1 & 3 & 0 & -2 & -1\end{array}\right]^{T},\left[\begin{array}{lllll}0 & 0 & 1 & 1 & 3\end{array}\right]^{T}\right\}$ is the row space
\Rightarrow the nullspace matrix is $\left[\begin{array}{ccc}-3 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\therefore \operatorname{span}\left\{\left[\begin{array}{lllll}-3 & 1 & 0 & 0 & 0\end{array}\right]^{T},\left[\begin{array}{lllll}2 & 0 & -1 & 1 & 0\end{array}\right]^{T},\left[\begin{array}{lllll}1 & 0 & -3 & 0 & 1\end{array}\right]^{T}\right\}$ is the null space

To find the column space and the left column space, we recover A first .
$A=E \times($ row echelon form of $A)$ and $I_{3}=E \times\left[\begin{array}{lll}1 & -2 & -3 \\ 2 & -3 & -2 \\ 3 & -6 & -8\end{array}\right]$
$\Rightarrow E=\left[\begin{array}{lll}1 & -2 & -3 \\ 2 & -3 & -2 \\ 3 & -6 & -8\end{array}\right]^{-1}=\left[\begin{array}{ccc}12 & 2 & -5 \\ 10 & 1 & -4 \\ -3 & 0 & 1\end{array}\right]$
$\therefore A=E \times($ row echelon form of $A)=\left[\begin{array}{ccccc}12 & 36 & 2 & -22 & -6 \\ 10 & 30 & 1 & -19 & -7 \\ -3 & -9 & 0 & 6 & 3\end{array}\right]$
\because The row operation doesn't change the relation between the columns of A
\Rightarrow
column $_{2}=$ column $_{1} \times 3$
column $_{4}=$ column $_{1} \times(-2)+$ column $_{3}$
column $_{5}=$ column $_{1} \times(-1)+$ column $_{3} \times 3$
$\therefore \operatorname{span}\left\{\left[\begin{array}{lll}12 & 10 & -3\end{array}\right]^{T},\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]^{T}\right\}$ is the column space of A
$\because E^{-1} \times A=($ row echelon form of $A)$
$\Rightarrow\left[\begin{array}{ccc}1 & -2 & -3 \\ 2 & -3 & -2 \\ 3 & -6 & -8\end{array}\right] \times\left[\begin{array}{ccccc}12 & 36 & 2 & -22 & -6 \\ 10 & 30 & 1 & -19 & -7 \\ -3 & -9 & 0 & 6 & 3\end{array}\right]=\left[\begin{array}{ccccc}1 & 3 & 0 & -2 & -1 \\ 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

We focus on the zero row of the row echelon form of A
$\Rightarrow\left[\begin{array}{lll}3 & -6 & -8\end{array}\right] \times\left[\begin{array}{ccccc}12 & 36 & 2 & -22 & -6 \\ 10 & 30 & 1 & -19 & -7 \\ -3 & -9 & 0 & 6 & 3\end{array}\right]=0$
$\Rightarrow\left[\begin{array}{lll}3 & -6 & -8\end{array}\right]^{T} \in$ the left null space of A

We know that the dimention of left null space $=$ the number of rows $-\operatorname{rank}$ and $\operatorname{rank}(A)=2$
\Rightarrow the dimention of left null space $=1$
$\therefore \operatorname{span}\left\{\left[\begin{array}{lll}3 & -6 & -8\end{array}\right]^{T}\right\}$ is the left null space

