Solutions to Homework 5

1. (a) $N(A) = \begin{bmatrix} 2 \ 3 \ 1 \ 0 \end{bmatrix}^{T}$ rank(A) = n-dim N(A) = 4-1=3 The complete solution is $\mathbf{x} = t \begin{bmatrix} 2 \\ 3 \\ 1 \\ 0 \end{bmatrix}, t \in R.$

(b)

Recall the method of finding N(A) from the reduced echelon form of A.

(If A ~
$$\begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}$$
, then N(A) = $\begin{bmatrix} -F \\ I \end{bmatrix}$)
We can get A ~ $\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

(c)

A is full colum rank $=> C(A) = R^3$

 \therefore Any **b** can be a linear combination of columns of A.

 \therefore A**x** = **b** is solvable for all **b**.

(a) A subspace in $\mathbf{R}^4 = \left\{ \mathbf{x} = \begin{bmatrix} x_1 & x_1 & x_1 \end{bmatrix}^T \mid \mathbf{x} \in \mathbf{R}^4 \right\}$ \Rightarrow Any vectors in this subspace are $\begin{bmatrix} x_1 & x_1 & x_1 \end{bmatrix}^T = x_1 \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$

 $\Rightarrow x_1 \text{ is any constant , so the vectors in this subspace are the linear combinations of } \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ $\therefore \text{ The basis is } \left\{ \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T \right\}$

A subspace in
$$\mathbf{R}^4 = \left\{ \mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T | x_1 + x_2 + x_3 + x_4 = 0, \mathbf{x} \in \mathbf{R}^4 \right\}$$

 $\Rightarrow \text{Let } x_2 = C_1, x_3 = C_2, x_4 = C_3 \text{ and } C_1, C_2, C_3 \in \Re$
 $\Rightarrow x_1 = -C_1 - C_2 - C_3$

$$\Rightarrow \mathbf{x} = C_1 \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} + C_2 \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix} + C_3 \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix}$$

 $\Rightarrow \mathbf{x} \text{ is the linear combination of } \left\{ \begin{bmatrix} -1 & 1 & 0 & 0 \end{bmatrix}^T, \begin{bmatrix} -1 & 0 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} -1 & 0 & 0 & 1 \end{bmatrix}^T \right\}$ $\therefore \text{ The basis is } \left\{ \begin{bmatrix} -1 & 1 & 0 & 0 \end{bmatrix}^T, \begin{bmatrix} -1 & 0 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} -1 & 0 & 0 & 1 \end{bmatrix}^T \right\}$

(*c*)

Let $\mathbf{u}_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T$ and $\mathbf{u}_2 = \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}^T$ A subspace in $\mathbf{R}^4 = \left\{ \mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T \mid \mathbf{x}^T \mathbf{u}_1 = \mathbf{x}^T \mathbf{u}_2 = 0$, $\mathbf{x} \in \mathbf{R}^4 \right\}$ \Rightarrow We can rewrite the relation between \mathbf{x} , \mathbf{u}_1 and \mathbf{u}_1 as

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = 0$$

$$\Rightarrow \text{ This subspace is equal to the left null space of } \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \text{ The left nullspace matrix} = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ -1 & -1 \\ 0 & 1 \end{bmatrix}$$

 $\therefore \text{ The basis is } \left\{ \begin{bmatrix} 1 & -1 & -1 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 0 & -1 & - \end{bmatrix}^T \right\}$

(d)

A subspace in
$$\mathbf{R}^4 = \left\{ \mathbf{x} = \begin{bmatrix} a & b & c & d \end{bmatrix}^T \mid c = a + b \text{ and } d = c - b \text{ , } \mathbf{x} \in \mathbf{R}^4 \right\}$$

$$\Rightarrow \mathbf{x} = \begin{bmatrix} a & b & c & d \end{bmatrix}^T = \begin{bmatrix} a & b & a + b & a \end{bmatrix}^T = a \times \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix} + b \times \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$$

 $\therefore \text{ The basis is } \left\{ \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}^T \right\}$

3.

$$I = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$P_{1} \qquad P_{2} \qquad P_{3} \qquad P_{4} \qquad P_{5}$$

To show the independence of these P's, assume $c_1P_1 + ... c_5P_5 = 0$

Focus on P_1 , $p_{33} = 1$ but other p_{33} 's are zero, so c_1 must be zero.

Focus on P_2 , $p_{12} = 1$ but other p_{12} 's are zero(except P_1 , but $c_1 = 0$ already), so c_2 must be zero.

Focus on P_3 , $p_{22} = 1$ but other p_{22} 's are zero, so c_3 must be zero.

Focus on P_4 , $p_{11} = 1$ but other p_{11} 's are zero, so c_4 must be zero.

Focus on P₅, $p_{32} = 1$ but other p_{32} 's are zero(except P₄, but $c_4 = 0$ already), so c_5 must be zero. $\therefore c_1 = \dots = c_5 = 0$ \therefore P's are independent.

Let Q be a linear combination of these P's.

: There is an ONE in each row and each column of these P's.

 \therefore Summations of rows and columns of Q will be all equal.

 \therefore P's can be a basis for matrices with this property.

4. (*a*) Ans: $\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 2 \end{bmatrix}$

The column space is span $\{\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 0 & 2 \end{bmatrix}^T \}$ The row space is span $\{\begin{bmatrix} 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 2 \end{bmatrix}^T \}$ which contains $\{\begin{bmatrix} 1 & 2 \end{bmatrix}^T, \begin{bmatrix} 2 & 3 \end{bmatrix}^T \}$

(b)

$$Ans: \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 3 & 3 & -3 \end{bmatrix}$$

The basis of column space is $\{\begin{bmatrix} 1 & 1 & 3 \end{bmatrix}^T \}$ The basis of null space is $\{\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T \}$

(*c*)

Dimention of null space = the number of columns - rank Dimention of left null space = the number of rows - rank \Rightarrow the number of rows +1 = the number of columns

$$Ans: \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 1 & 3 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$

(d) $\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ a & b \end{bmatrix} = 0$ $\Rightarrow a = -1, b = -\frac{1}{2}$ $Ans : \begin{bmatrix} 2 & 1 \\ -1 & -\frac{1}{2} \end{bmatrix}$

(e) Row space = column space \Rightarrow The matrix must be square \Rightarrow Dimention of null space = the number of columns - rank Dimention of left null space = the number of rows - rank But the matrix is square and dimention of column space = dimention of row space. .: This matrix is impossible

5.

dim N(A) = 2 (There are two homogeneous solutions)

: A basis for the null space can be $\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\}$. ----(c)

A must be 4 by 3.

From the rank theorom,
$$rank(A) = n-dim N(A)=1$$

Since dim C(A) = rank(A) = 1, a basis for the column space of A contains only one vector.

$$\therefore Ax = \begin{bmatrix} 1 \ 2 \ 1 \ 1 \end{bmatrix}^{T} \text{ is solve } \therefore \begin{bmatrix} 1 \ 2 \ 1 \ 1 \end{bmatrix}^{T} \text{ is in } C(A)$$

 $\therefore \text{ A basis for the column space can be} \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix} ----(b)$ We know N(A) = $\begin{bmatrix} 2 & 1\\1 & 0\\0 & 1 \end{bmatrix}$, free variables are in bold face. Recall the method of the form

Recall the method of finding N(A) from the reduced echelon form of A.

(If A ~
$$\begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}$$
, then N(A) = $\begin{bmatrix} -F \\ I \end{bmatrix}$)
We can get A ~ $\begin{bmatrix} 1 & -2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ ----(a)

The reduced row echelon form of *A* is $\begin{bmatrix} 1 & 3 & 0 & -2 & -1 \\ 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

 $\Rightarrow \text{From the reduced row echelon form, we can get the row space and the null space of } A.$ $\therefore \text{ span} \left\{ \begin{bmatrix} 1 & 3 & 0 & -2 & -1 \end{bmatrix}^T, \begin{bmatrix} 0 & 0 & 1 & 1 & 3 \end{bmatrix}^T \right\} \text{ is the row space}$

$$\Rightarrow \text{ the nullspace matrix is} \begin{bmatrix} -3 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\therefore \text{ span}\left\{ \begin{bmatrix} -3 & 1 & 0 & 0 \end{bmatrix}^T, \begin{bmatrix} 2 & 0 & -1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & -3 & 0 & 1 \end{bmatrix}^T \right\}$ is the null space

To find the column space and the left column space, we recover A first.

 $A = E \times (\text{row echelon form of } A) \text{ and } I_3 = E \times \begin{bmatrix} 1 & -2 & -3 \\ 2 & -3 & -2 \\ 3 & -6 & -8 \end{bmatrix}$ $\Rightarrow E = \begin{bmatrix} 1 & -2 & -3 \\ 2 & -3 & -2 \\ 3 & -6 & -8 \end{bmatrix}^{-1} = \begin{bmatrix} 12 & 2 & -5 \\ 10 & 1 & -4 \\ -3 & 0 & 1 \end{bmatrix}$ $\therefore A = E \times (\text{row echelon form of } A) = \begin{bmatrix} 12 & 36 & 2 & -22 & -6 \\ 10 & 30 & 1 & -19 & -7 \\ -3 & -9 & 0 & 6 & 3 \end{bmatrix}$

∴ The row operation doesn't change the relation between the columns of A⇒ column₂ = column₁×3 column₄ = column₁×(-2) + column₃ column₅ = column₁×(-1) + column₃×3 ∴ span { $\begin{bmatrix} 12 & 10 & -3 \end{bmatrix}^T$, $\begin{bmatrix} 2 & 1 & 0 \end{bmatrix}^T$ } is the column space of A

6.

 $\therefore E^{-1} \times A =$ (row echelon form of *A*)

$$\Rightarrow \begin{bmatrix} 1 & -2 & -3 \\ 2 & -3 & -2 \\ 3 & -6 & -8 \end{bmatrix} \times \begin{bmatrix} 12 & 36 & 2 & -22 & -6 \\ 10 & 30 & 1 & -19 & -7 \\ -3 & -9 & 0 & 6 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 & -2 & -1 \\ 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

We focus on the zero row of the row echelon form of A

$$\Rightarrow \begin{bmatrix} 3 & -6 & -8 \end{bmatrix} \times \begin{bmatrix} 12 & 36 & 2 & -22 & -6 \\ 10 & 30 & 1 & -19 & -7 \\ -3 & -9 & 0 & 6 & 3 \end{bmatrix} = 0$$

 $\Rightarrow \begin{bmatrix} 3 & -6 & -8 \end{bmatrix}^T \in \text{the left null space of } A$

We know that the dimension of left null space = the number of rows $- \operatorname{rank} \operatorname{and} \operatorname{rank}(A) = 2$ \Rightarrow the dimension of left null space = 1

 \therefore span $\{ \begin{bmatrix} 3 & -6 & -8 \end{bmatrix}^T \}$ is the left null space