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Assume  is the matrix represented T

If  , 

 ,  is m by n

(a)If T maps  onto 

All vectors in  will be mapped

( ) ( )

( )  ,  is full row rank

n m

(b)If T is one-to-on

n m

n m

m

mRange T C

rank m

  

 



  

 

 

A

x R y R

Ax y A

R R

R

A R

A A

e

Each vector in  will be mapped to only one vector in 

The null space of  must be the zero vector , because only one vector can be mapped to zero

 is full column rank

m n

(c)If T is one-to-one a

m n





 

R R

A

A

nd maps  onto 

According to (a) and (b) , the matrix  must satisfy n m and m n

If m n , T is one-to-one and maps  onto  .

n m

n m

  

 

R R

A

R R

 

3.

Linear transformation keep straight lines straight. Two parallel edges of a square (edges differing 
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The coordinate vector of 1 2 = 1 1 2

The coordinate vector of 2 5 = 2 1 5

The coordinate vector of 1 4 2 = 1 4 2
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Let a basis =  ,  ,  and another basis =  ,  , 

Assume T is a linear transformation about mapping the coordinates of  to the coordinates of  .
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