Matrix Theory Problem Set 2

Due <u>Thursday, 7 October 2010</u> at 12 noon in EE105. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print every group member's name and student ID on your homework.

- 1. (20pts) The sum $W_1 + W_2$ of two subspaces W_1 and W_2 of a finite-dimensional vector space *V* is called a *direct sum*, denoted by $W_1 \oplus W_2$, if $\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{0}$, $\mathbf{w}_1 \in W_1$, $\mathbf{w}_2 \in W_2$ implies $\mathbf{w}_1 = \mathbf{w}_2 = \mathbf{0}$, i.e., $W_1 \cap W_2 = \{\mathbf{0}\}$. Prove that $W_1 + W_2$ is a direct sum if and only if $\dim(W_1 + W_2) = \dim W_1 + \dim W_2$. (Hint: start with bases for W_1 and W_2 .)
- 2. (15pts) If {v₁,..., v_n} and {w₁,..., w_n} are bases for an *n*-dimensional vector space V, show that there exists an invertible linear transformation T on V such that T(v_j) = w_j, j = 1,...,n. (Hint: think of matrix representation.)
- 3. (15pts) Consider the vector space consisting of all real 2 by 2 matrices and let *T* be the linear transformation on this space that sends each matrix *X* onto *PX*, i.e, T(X) = PX, where $P = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Find the matrix representation of *T* with respect to the ordered basis consisting of $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
- 4. (15pts) If $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ is an *n* by *n* matrix such that $a_{ii} = 0, i = 1, ..., n$, then there exist matrices $B = \begin{bmatrix} b_{ij} \end{bmatrix}$ and $C = \begin{bmatrix} c_{ij} \end{bmatrix}$ such that A = BC CB. (Hint: try diagonal matrix.)

- 5. (15pts) Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Show that if a 2 by 2 matrix *B* commutes with *A*, i.e, AB = BA, then there exists a polynomial p(t) such that B = p(A). Note that for each polynomial, there is a corresponding matrix polynomial. For example, the corresponding matrix polynomial of $p(t) = t^2 - 2t + 3$ is $p(A) = A^2 - 2A + 3I$, where *I* is the identity matrix.
- 6. (20pts) Suppose *A* is a 3 by 3 matrix of the form $A = I 2\mathbf{u}\mathbf{u}^T$, where **u** is a unit vector in \mathbb{R}^3 , i.e., $\mathbf{u}^T \mathbf{u} = 1$. Find a matrix *A* such that $A\mathbf{x} = \mathbf{y}$, where

$$\mathbf{x} = \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Is it possible to find a matrix A with the above form

such that $A\mathbf{z} = \mathbf{y}$, where $\mathbf{z} = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$? State your reasoning.