Matrix Theory

Problem Set 4

Due Monday, 25 October 2010 at 12 noon in EE105. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print every group member's name and student ID on your homework.

1. (15pts) Let $V=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and $W=\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ be the subspaces in \mathbb{R}^{4}, where

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
-1 \\
2 \\
-7 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
2 \\
5 \\
-6 \\
-5
\end{array}\right] \text { and } \mathbf{w}_{1}=\left[\begin{array}{r}
1 \\
2 \\
-1 \\
-2
\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{r}
-1 \\
0 \\
1 \\
-1
\end{array}\right], \mathbf{w}_{3}=\left[\begin{array}{l}
3 \\
1 \\
1 \\
1
\end{array}\right] .
$$

Find the dimensions and bases for $V \cap W$ and $V+W$.
2. (15pts) Let A be 5×7 and B be 7×6 matrices.
(a) If $\operatorname{rank}(A)=4$, find all possible values of $\operatorname{rank}(A B)$.
(b) If $\operatorname{rank}(A)=3$ and $\operatorname{rank}(A B)=2$, find all possible values of $\operatorname{rank}(B)$.
(c) Is it possible that $\operatorname{rank}(A)=3, \operatorname{rank}(B)=5$, and $A B=0$?
3. (20pts) Show that the intersection of three 6-dimensional subspaces in \mathbb{R}^{8} is not the single point $\{\mathbf{0}\}$.
4. (20pts) Let A be m by n, and $\operatorname{rank}(A)=r$. Let $E=\left[\begin{array}{l}E_{1} \\ E_{2}\end{array}\right]$ be an invertible matrix such that $E A=\left[\begin{array}{l}R \\ 0\end{array}\right]$, where R is r by n, and R is in reduced row echelon form. Show that $C(A)=N\left(E_{2}\right)$, where $C(A)$ is the column space of A, and $N\left(E_{2}\right)$ is the nullspace of E_{2}.
5. (15pts) If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ are bases of \mathbb{R}^{n}, and for every j,

$$
\begin{aligned}
& A \mathbf{u}_{j}=c_{1 j} \mathbf{u}_{1}+c_{2 j} \mathbf{u}_{2}+\cdots+c_{n j} \mathbf{u}_{n} \\
& B \mathbf{v}_{j}=c_{1 j} \mathbf{v}_{1}+c_{2 j} \mathbf{v}_{2}+\cdots+c_{n j} \mathbf{v}_{n}
\end{aligned}
$$

Prove that there exists an invertible matrix S such that $A=S B S^{-1}$. Show the invertible matrix S you found.
6. (15pts) Suppose U and W are subspaces in a vector space V. If U and W are invariant subspaces under linear transformation A, prove that $U+W$ is an invariant subspace under A. Is $U \cap W$ also invariant under A ? State your reasoning. Recall that a subspace S is invariant under linear transformation A if $A(S) \triangleq\{A(\mathbf{x}) \mid \mathbf{x} \in S\} \subseteq S$.

