Matrix Theory Problem Set 5

Due <u>Thursday, 11 November 2010</u> at 12 noon in EE105. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print every group member's name and student ID on your homework.

- 1. (20pts) Let A be an $n \times n$ matrix.
 - (a) If A is singular, what are the possible values of rank(adjA)? Why?
 - (b) If A is singular and $n \ge 3$, use the results in (a) to prove that adj(adjA) = 0.
 - (c) If S is invertible, show that $adj(SAS^{-1}) = S(adjA)S^{-1}$.
- 2. (15pts) For each of the following matrices, find all the eigenvalues and the corresponding eigenvectors.

	a	1	1	1		a	b	С	d	
	1	а	1	1	<i>B</i> =	b	а	d	с	
	1	1	а	1		с	d	а	b	
		1					С			

3. (15pts) Consider the block diagonal matrix $A = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}$, where *B* is $m \times m$

and C is $n \times n$. Express the eigenvectors of A in terms of those of B and C. Also, show that the eigenvalues of A are those of B together with those of C.

- 4. (20pts) If $\mathbf{u} = (1,1,1,1,1)$, and $A = I + \mathbf{u}\mathbf{u}^T$, answer the following questions:
 - (a) Find the eigenvalues and eigenvectors of A.
 - (b) Is A diagonalizable? If yes, express A as $A = S\Lambda S^{-1}$, where Λ is a diagonal matrix.
 - (c) What is the determinant of *A*?
 - (d) What is the trace of A^2 ?
- 5. (15pts) Let $q(t) = a_0 + a_1 t + \dots + a_m t^m$ be a given polynomial. The matrix

polynomial of A is defined to be $q(A) = a_0 I + a_1 A + \dots + a_m A^m$.

- (a) If $A\mathbf{x} = \lambda \mathbf{x}$, show $q(\lambda)$ is an eigenvalue of the matrix q(A) and \mathbf{x} is an eigenvector corresponding to $q(\lambda)$.
- (b) If A is diagonalizable, show that q(A) is diagonalizable.
- (c) If A is similar to B, show that q(A) is similar to q(B).
- 6. (15pts) If A is diagonalizable, consider the characteristic polynomial $p_A(t)$ and show that $p_A(A)$ is the zero matrix. This is called Cayley-Hamilton theorem.