Matrix Theory

Problem Set 5

Due Thursday, 11 November 2010 at 12 noon in EE105. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print every group member's name and student ID on your homework.

1. (20pts) Let A be an $n \times n$ matrix.
(a) If A is singular, what are the possible values of $\operatorname{rank}(\operatorname{adj} A)$? Why?
(b) If A is singular and $n \geq 3$, use the results in (a) to prove that $\operatorname{adj}(\operatorname{adj} A)=0$.
(c) If S is invertible, show that $\operatorname{adj}\left(S A S^{-1}\right)=S(\operatorname{adj} A) S^{-1}$.
2. (15pts) For each of the following matrices, find all the eigenvalues and the corresponding eigenvectors.

$$
A=\left[\begin{array}{llll}
a & 1 & 1 & 1 \\
1 & a & 1 & 1 \\
1 & 1 & a & 1 \\
1 & 1 & 1 & a
\end{array}\right], \quad B=\left[\begin{array}{llll}
a & b & c & d \\
b & a & d & c \\
c & d & a & b \\
d & c & b & a
\end{array}\right] .
$$

3. (15pts) Consider the block diagonal matrix $A=\left[\begin{array}{ll}B & 0 \\ 0 & C\end{array}\right]$, where B is $m \times m$
and C is $n \times n$. Express the eigenvectors of A in terms of those of B and C. Also, show that the eigenvalues of A are those of B together with those of C.
4. (20pts) If $\mathbf{u}=(1,1,1,1,1)$, and $A=I+\mathbf{u u}^{T}$, answer the following questions:
(a) Find the eigenvalues and eigenvectors of A.
(b) Is A diagonalizable? If yes, express A as $A=S \Lambda S^{-1}$, where Λ is a diagonal matrix.
(c) What is the determinant of A ?
(d) What is the trace of A^{2} ?
5. (15pts) Let $q(t)=a_{0}+a_{1} t+\cdots+a_{m} t^{m}$ be a given polynomial. The matrix
polynomial of A is defined to be $q(A)=a_{0} I+a_{1} A+\cdots+a_{m} A^{m}$.
(a) If $A \mathbf{x}=\lambda \mathbf{x}$, show $q(\lambda)$ is an eigenvalue of the matrix $q(A)$ and \mathbf{x} is an eigenvector corresponding to $q(\lambda)$.
(b) If A is diagonalizable, show that $q(A)$ is diagonalizable.
(c) If A is similar to B, show that $q(A)$ is similar to $q(B)$.
6. (15pts) If A is diagonalizable, consider the characteristic polynomial $p_{A}(t)$ and show that $p_{A}(A)$ is the zero matrix. This is called Cayley-Hamilton theorem.
