Matrix Theory

Problem Set 8

Due Thursday, 16 December 2010 at 12 noon in EE105. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print every group member's name and student ID on your homework.

1. (20pts) Answer the following questions.
(a) If A is similar to A^{-1}, must all the eigenvalues of A equal to 1 or -1 ? If your answer is yes, prove it; otherwise, give a counter example.
(b) Are the following matrices similar? Justify your answer.

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

2. (10%) Find the Jordan canonical form J of the matrix

$$
A=\left[\begin{array}{rrr}
3 & -7 & -2 \\
1 & -2 & -1 \\
-3 & 9 & 4
\end{array}\right] .
$$

Also, find an invertible matrix M such that $A=M J M^{-1}$.
3. (35pts) Answer the following questions.
(a) Find the Jordan form of the following matrix

$$
\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

(b) If J is a Jordan block with eigenvalue λ, find the Jordan forms of J^{-1} (if it exists) and J^{2}.
(c) Explain why every nonsingular complex matrix A has a square root, i.e., there exists B such that $B^{2}=A$.
4. (15pts) Note that the following matrices are m by m. With the convention that $\binom{k}{j}=0$ for $j>k$, explain that
5. (20pts) Answer the following questions.
(a) Show that if $A B=B A$, then $e^{A+B}=e^{A} e^{B}$.
(b) Give an example to illustrate that $e^{A+B} \neq e^{A} e^{B}$, in general.

