Solutions to problem set 2

```
#1
step1 : prove that W_1+W_2 is a direct sum \Rightarrow dim(W_1+W_2)=dim(W_1)+dim(W_2)
let U=\{u_1,u_2,...,u_m\} is the base of W_1
let V = \{v_1, v_2, ..., v_n\} is the base of W_2
let W_1 \in W_1, W_2 \in W_2
\Rightarrow \mathbf{w}_1 = \mathbf{c}_1 \mathbf{u}_1 + \mathbf{c}_2 \mathbf{u}_2 + ... + \mathbf{c}_m \mathbf{u}_m
\Rightarrow \mathbf{w}_2 = \mathbf{d}_1 \mathbf{v}_1 + \mathbf{d}_2 \mathbf{v}_2 + ... + \mathbf{d}_n \mathbf{v}_n
w_1 + w_2 \in W_1 + W_2 = \text{span}\{u_1, u_2, ..., u_m, v_1, v_2, ..., v_n\}
let w_1 + w_2 = 0
\Rightarrow w<sub>1</sub> + w<sub>2</sub> = 0 has unique solution : w<sub>1</sub> = w<sub>2</sub> = 0
\Rightarrow c_1 u_1 + c_2 u_2 + ... + c_m u_m = d_1 v_1 + d_2 v_2 + ... + d_n v_n = 0
\Rightarrow c_1 = c_2 = ... = c_m = 0 and d_1 = d_2 = ... = d_n = 0
\Rightarrow \{u_1, u_2, ..., u_m, v_1, v_2, ..., v_n\} is linear independent
\Rightarrow \{u_1, u_2, ..., u_m, v_1, v_2, ..., v_n\} is the base of W_1 + W_2
\Rightarrow dim(W<sub>1</sub>+W<sub>2</sub>)=m+n=dim(W<sub>1</sub>)+dim(W<sub>2</sub>)
step2 : prove \dim(W_1+W_2)=\dim(W_1)+\dim(W_2) \Rightarrow W_1+W_2 is a direct sum
let S=\{s_1,s_2,...s_k\} is the base of W_1 \cap W_2
let U = \{u_1, u_2, ..., u_m, s_1, s_2, ..., s_k\} is the base of W_1
let V = \{v_1, v_2, ..., v_n, s_1, s_2, ..., s_k\} is the base of W_2
S \cap U = \phi and S \cap V = \phi
\Rightarrow \dim(W_1 \cap W_2) = k
\Rightarrow \dim(W_1) = m + k
\Rightarrow \dim(W_2) = n + k
\Rightarrow W<sub>1</sub>+W<sub>2</sub> = span{u<sub>1</sub>,u<sub>2</sub>,...,u<sub>m</sub>,s<sub>1</sub>,s<sub>2</sub>,...s<sub>k</sub>,v<sub>1</sub>,v<sub>2</sub>,...,v<sub>n</sub>}
v_1, v_2, ..., v_n \notin W_1
\therefore v_1, v_2, ..., v_n can't be represented by u_1, u_2, ..., u_m, s_1, s_2, ..., s_k
u_1, u_2, ..., u_n \notin W_2
\therefore u_1, u_2, ..., u_n can't be represented by v_1, v_2, ..., v_m, s_1, s_2, ..., s_k
\Rightarrow \{u_1, u_2, ..., u_m, s_1, s_2, ..., s_k, v_1, v_2, ..., v_n\} is linear independent
\Rightarrow \{u_1, u_2, ..., u_m, s_1, s_2, ..., s_k, v_1, v_2, ..., v_n\} is the base of W_1 + W_2
\Rightarrow \dim(W_1 + W_2) = m + k + n
:: \dim(W_1 + W_2) = \dim(W_1) + \dim(W_2)
\Rightarrow m + k + n = m + n + 2k
\Rightarrow k = 0
\Rightarrow \dim(W_1 \cap W_2) = k = 0
\Rightarrow W<sub>1</sub> \cap W<sub>2</sub> = \Phi
\Rightarrow W<sub>1</sub>+W<sub>2</sub> is a direct sum
by step1 and step2 : \dim(W_1+W_2)=\dim(W_1)+\dim(W_2) \iff W_1+W_2 is a direct sum
```

let
$$W = \{w_1, w_2, ..., w_n\}$$

$$T(v_j) = \sum_{i=1}^{n} a_{ij} w_i = w_j$$
, $j = 1,...,n$

$$T(v_{j}) = a_{1j}w_{1} + a_{2j}w_{2} + ... + a_{jj}w_{j} + ... + a_{nj}w_{n} = w_{j} \quad , \quad j = 1,...,n$$

$$a_{ii} = 0$$
 , $i \neq j$

$$a_{ij} = 1$$
 , $i = j$

$$\Rightarrow [T]_{W} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} = I_{n \times n}$$

 $:: I_{n \times n}$ is an invertible matrix

∴T is an invertible linear transform

#3

let
$$S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$T\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
$$= 1\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 0\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 1\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$T\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$
$$= 0\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 1\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 1\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$T\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
$$= 1\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 0\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 1\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$
$$= 0\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 1\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 1\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow [T]_{S} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

#4

$$A = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1 \ n} \\ a_{n1} & \cdots & a_{n \ n-1} & 0 \end{pmatrix} = BC - CB$$

let B is a diagonal matrix

$$A = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1 \ n} \\ a_{n1} & \cdots & a_{n \ n-1} & 0 \end{pmatrix} = \begin{pmatrix} b_{11} & 0 & \cdots & 0 \\ 0 & b_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & b_{nn} \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_{n-1 \ n} \\ c_{n1} & \cdots & c_{n \ n-1} & c_{nn} \end{pmatrix} - \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_{n-1 \ n} \\ c_{n1} & \cdots & c_{n \ n-1} & c_{nn} \end{pmatrix} \begin{pmatrix} b_{11} & 0 & \cdots & 0 \\ 0 & b_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_{n-1 \ n} \\ c_{n1} & \cdots & c_{n \ n-1} & c_{nn} \end{pmatrix}$$

 $\Rightarrow a_{ii} = b_{ii}c_{ii} - c_{ii}b_{ii}$

$$\Longrightarrow c_{ij} = \frac{a_{ij}}{b_{ii} - b_{jj}}$$

$$\Rightarrow A = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1 n} \\ a_{n1} & \cdots & a_{n n-1} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} b_{11} & 0 & \cdots & 0 \\ 0 & b_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b_{nn} \end{pmatrix} \begin{pmatrix} 0 & \frac{a_{12}}{b_{11} - b_{22}} & \cdots & \frac{a_{1n}}{b_{11} - b_{nn}} \\ \frac{a_{21}}{b_{22} - b_{11}} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b_{nn} \end{pmatrix} \begin{pmatrix} 0 & \frac{a_{12}}{b_{11} - b_{22}} & \cdots & \frac{a_{1n}}{b_{11} - b_{nn}} \\ \frac{a_{21}}{b_{22} - b_{11}} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \frac{a_{n-1}}{b_{n-1} - b_{nn}} \end{pmatrix} - \begin{pmatrix} 0 & \frac{a_{12}}{b_{11} - b_{22}} & \cdots & \frac{a_{1n}}{b_{11} - b_{nn}} \\ \frac{a_{21}}{b_{22} - b_{11}} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \frac{a_{n-1}}{b_{n-1} - b_{nn}} \end{pmatrix} \begin{pmatrix} b_{11} & 0 & \cdots & 0 \\ 0 & b_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b_{nn} \end{pmatrix}$$

⇒ Every diagonal elements of matrix B must be distinct.

 \Rightarrow There exist matrices $B = [b_{ii}]$ and $C = [c_{ii}]$ such that A = BC - CB

#5

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \implies A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

$$AB = BA \implies B = A^{-1}BA$$

Assume
$$B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad a, b, c, d \in \mathbb{R}$$
$$= \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & a+b \\ c & c+d \end{pmatrix}$$
$$= \begin{pmatrix} a-c & (a+b)-(c+d) \\ c & c+d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\Rightarrow$$
 c = 0, a = d

$$\Rightarrow B = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} = bA + (a - b)I = p(A)$$

$$\Rightarrow$$
 p(A) = bA + (a - b)I

$$\Rightarrow$$
 p(t) = bt + (a - b)

 \Rightarrow There exists a polynomial p(t) = bt + (a - b) such that B = p(A)

$$Ax = y$$

$$\Rightarrow (I - 2uu^T)x = y$$

$$\Rightarrow$$
 x - 2uu^Tx = y

$$\Rightarrow x - 2u(u^Tx) = y$$

$$\Rightarrow x - 2(u^Tx)u = y$$

$$\Rightarrow 2(\mathbf{u}^{\mathrm{T}}\mathbf{x})\mathbf{u} = \mathbf{x} - \mathbf{y}$$

$$\Rightarrow$$
 u is on the direction of $x-y$

let
$$u = k(x - y)$$

$$\Rightarrow 2(\mathbf{u}^{\mathrm{T}}\mathbf{x})\mathbf{k}(\mathbf{x}-\mathbf{y}) = \mathbf{x}-\mathbf{y}$$

$$\Rightarrow 2(\mathbf{u}^{\mathrm{T}}\mathbf{x})\mathbf{k} = 1$$

$$\Rightarrow 2[k(x-y)^Tx]k=1$$

$$\Rightarrow 2k^2[x^Tx - y^Tx] = 1$$

$$\Rightarrow k^2 = \frac{1}{2[x^T x - y^T x]}$$

$$\Rightarrow k = \pm \frac{1}{\sqrt{2[x^T x - y^T x]}}$$

(1)
$$x = \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 and $y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

$$\Rightarrow x^T x = 1$$
 and $y^T x = \frac{1}{3}$

$$\Rightarrow k = \pm \frac{1}{\sqrt{2[1 - \frac{1}{3}]}} = \pm \frac{\sqrt{3}}{2}$$

$$\Rightarrow$$
 u = k(x - y)

$$\Rightarrow \mathbf{u} = \pm \frac{\sqrt{3}}{2} \begin{bmatrix} \frac{1}{3} \begin{pmatrix} 1\\2\\2 \end{pmatrix} - \begin{pmatrix} 1\\0\\0 \end{pmatrix} \end{bmatrix}$$

$$\Rightarrow \mathbf{u} = \pm \frac{\sqrt{3}}{2} \begin{bmatrix} \frac{1}{3} \begin{pmatrix} -2\\2\\2 \end{pmatrix} \end{bmatrix} = \pm \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\1\\1 \end{pmatrix}$$

$$\Rightarrow A = I - 2uu^T$$

$$\Rightarrow A = I - 2(\frac{1}{3}) \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{pmatrix}$$

(2)

 \Rightarrow u is on the direction of z-y

$$\Rightarrow$$
 let $u = c(z - y)$

$$\mathbf{u} = \mathbf{c} \begin{pmatrix} -1\\3\\-2 \end{pmatrix} - \begin{pmatrix} 1\\0\\0 \end{pmatrix} = \mathbf{c} \begin{pmatrix} -2\\3\\2 \end{pmatrix}$$

$$\Rightarrow c = \pm \frac{1}{\sqrt{2[z^{\mathsf{T}}z - y^{\mathsf{T}}z]}} = \pm \frac{1}{\sqrt{2[14 - (-1)]}} = \pm \frac{1}{\sqrt{30}}$$

$$\Rightarrow u = \pm \frac{1}{\sqrt{30}} \begin{pmatrix} -2\\3\\2 \end{pmatrix}$$

$$\Longrightarrow \left|u\right| = \sqrt{\frac{17}{30}} \neq 1$$

 \Rightarrow It is impossible to find a matrix A such that Az = y , where $z = \begin{pmatrix} -1 \\ 3 \\ -2 \end{pmatrix}$