Due Tuesday, 6 March 2012 at 10:00 AM in EE208. This problem set covers Lecture 1-3. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Let $A=\left[\begin{array}{rrr}4 & -1 & 3 \\ -2 & 2 & 0 \\ 1 & -2 & -1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$. Show that the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for all possible \mathbf{b}, and describe the set of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ does have a solution.
2. (20 pts) Consider the system of linear equations:

$$
\begin{aligned}
x+(a-1) y+(a-2) z & =2 \\
a x+2(a-1) y+(a-2) z & =a+1 \\
a(a-2) x+a z & =-2 a .
\end{aligned}
$$

Find the real values of a such that this system of equations satisfies the following conditions.
(a) The system has no solution.
(b) The system has a unique solution.
(c) The system has infinite many solutions.
3. (20pts) Let

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] .
$$

(a) Find elimination matrices E_{21} then E_{32} then E_{43} to change A into an echelon form U, i.e., $E_{43} E_{32} E_{21} A=U$.
(b) Apply those three steps to the identity matrix I, to multiply $E_{43} E_{32} E_{21}$.
4. (15pts) The three types of elementary row operations are not independent: the row exchange operation can be accomplished by a sequence of the other two types of row operations, namely, replacing (i.e., subtracting $k \times$ rowi from rowj) and scaling (i.e., multiplying rowi by $k, k \neq 0$). Apply a sequence of replacing and scaling operations to the identify matrix I to obtain the permutation matrix:

$$
P=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

5. (15pts) Without using Gaussian elimination, solve X by inspection. Identify the size of X first.
(a) $\left[\begin{array}{llll}1 & 2 & 1 & 1 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4\end{array}\right] X=\left[\begin{array}{lllll}1 & 0 & 4 & 4 & 5 \\ 2 & 2 & 4 & 5 & 5 \\ 3 & 0 & 4 & 6 & 6 \\ 4 & 0 & 4 & 7 & 7\end{array}\right]$
(b) $X\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$.
6. (15pts) Consider the following three systems where the coefficients are the same for each system, but the right-hand sides are different:

$$
\begin{array}{rl}
3 x+2 y-2 z=1 & 0
\end{array}\left|\begin{array}{l}
0 \\
-x-y+z=0 \\
x+3 y-2 z=0
\end{array}\right| \begin{aligned}
& 0 \\
& 0 \\
& 1 .
\end{aligned}
$$

Solve all three systems at one time by performing Gaussian elimination on an augmented matrix of the form $\left[A\left|\mathbf{b}_{1}\right| \mathbf{b}_{2} \mid \mathbf{b}_{3}\right]$. What is the 3 by 3 matrix X such that $X A=I$?

