Due Tuesday, 5 March 2013 at 12:00 PM in EE208. This problem set covers Lecture 1-4. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (10pts) Let $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ 0 & 0 & 0 \\ 2 & -4 & 6\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$. Show that the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for all possible \mathbf{b}, and describe the set of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ does have a solution.
2. (10pts) Write down the 3 by 3 matrices that produce these elimination steps:
(a) E_{21} : subtract 4 times row 1 from row2.
(b) E_{32} : subtract -7 times row 2 from row3.
(c) P : exchange row 1 and row2, then row 2 and row3.
3. (10pts) Let

$$
A=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Find elimination matrices E_{21} then E_{32} then E_{43} to change A into an echelon form U, i.e., $E_{43} E_{32} E_{21} A=U$.
4. (10pts) Consider the following three systems where the coefficients are the same for each system, but the right-hand sides are different:

$$
\begin{aligned}
x-y & =1|0| 0 \\
2 x-y+z & =0|1| 0 \\
2 x-2 y+z & =0|0| 1
\end{aligned}
$$

Solve all three systems at one time by performing Gaussian elimination on an augmented matrix of the form $\left[A\left|\mathbf{b}_{1}\right| \mathbf{b}_{2} \mid \mathbf{b}_{3}\right]$. What is the 3 by 3 matrix X such that $X A=I$?
5. (15pts) The three types of elementary row operations are not independent: the row exchange operation can be accomplished by a sequence of the other two types of row operations, namely, replacing (i.e., subtracting $k \times$ rowi from rowj) and scaling (i.e., multiplying rowi by $k, k \neq 0$). Apply a sequence of replacing and scaling operations to the 3 by 3 identify matrix I to obtain the permutation matrix:

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] .
$$

6. (15pts) True or false. Give a specific example when false:
(a) If columns 2 and 4 of B are the same, so are columns 2 and 4 of $A B$.
(b) If rows 2 and 4 of B are the same, so are rows 2 and 4 of $A B$.
(c) If rows 2 and 4 of A are the same, so are rows 2 and 4 of $A B C$.
(d) $(A B)^{2}=A^{2} B^{2}$.
(e) $(A+B)^{2}=A^{2}+2 A B+B^{2}$.
7. (15pts) Without using Gaussian elimination, solve X by inspection. Identify the size of X first.
(a) $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right] X=\left[\begin{array}{lllll}4 & 0 & 3 & 5 & 3 \\ 3 & 0 & 3 & 4 & 3 \\ 2 & 1 & 3 & 3 & 6 \\ 1 & 0 & 3 & 2 & 6\end{array}\right]$
(b) $X\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$.
8. (15pts) Section 2.4, Problem 36 (Show every step of your proof.)

To prove that $(A B) C=A(B C)$, use the column vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ of B. First suppose that C has only one column \mathbf{c} with entries c_{1}, \ldots, c_{n} :
$A B$ has columns $A \mathbf{b}_{1}, \ldots, A \mathbf{b}_{n}$ and then $(A B) \mathbf{c}$ equals $c_{1} A \mathbf{b}_{1}+\ldots+c_{n} A \mathbf{b}_{n}$.
$B \mathbf{c}$ has one column $c_{1} \mathbf{b}_{1}+\ldots+c_{n} \mathbf{b}_{n}$ and then $A(B \mathbf{c})$ equals $A\left(c_{1} \mathbf{b}_{1}+\ldots+c_{n} \mathbf{b}_{n}\right)$.
Linearity gives equality of those two sums. This proves $(A B) \mathbf{c}=A(B \mathbf{c})$. The same is true for all other \qquad of C. Therefore $(A B) C=A(B C)$. Apply to inverses:
If $B A=I$ and $A C=I$, prove that the left-inverse B equals the right-inverse C.

