Linear Algebra Problem Set 1

Due Thursday, 3 March 2016 at 4:20 PM in EE105. This problem set covers Lectures 1-4. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Consider the linear system

$$x + y - z = 2$$
$$x + 2y + z = 3$$
$$+ y + (k^{2} - 5)z = k.$$

(a) For which value(s) of *k* does this system have a unique solution?

х

- (b) For which value(s) of k does the system have infinitely many solutions?
- (c) For which value(s) of *k* is the system inconsistent? A system is inconsistent if there is no solution.
- 2. (10pts) Find a polynomial of degree ≤ 2 (a polynomial of the form $f(t) = a + bt + ct^2$) whose graph goes through the points $(1, p_1)$, $(2, p_2)$, $(3, p_3)$, where p_1, p_2, p_3 are arbitrary constants. Does such a polynomial exist for all values of p_1, p_2, p_3 ?
- 3. (10pts) Is there a sequence of elementary row operations that transform

1	2	3]		[1	0	0	
4	5	6	into	0	1	0	?
7	8	9		0	0	0_	

Explain.

4. (10pts) For which values of the constants *a* and *b* is the vector $\begin{bmatrix} 3 \\ a \\ b \end{bmatrix}$ a linear

	1		2		1	
combination of	3	,	6	, and	1	?
	2		_4_		1	

- 5. (10pts) Boris has 32 bills in his wallet, in the denominations of US\$1, 5, and 10, worth \$100 in total. How many does Boris have of each denomination?
- 6. (15pts) The three types of elementary row operations are *not independent*: the row exchange operation can be accomplished by a sequence of the other two types of

row operations, namely, replacing (i.e., subtracting $k \times \text{row}i$ from rowj) and scaling (i.e., multiplying rowi by $k, k \neq 0$). Apply a sequence of replacing and scaling operations to the 3 by 3 identity matrix *I* to obtain the permutation matrix:

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- 7. (20pts) True or false. Justify your answer.
 - (a) If columns 1 and 2 of A are the same, so are columns 1 and 2 of AB.
 - (b) If rows 2 and 3 of A are the same, so are rows 2 and 3 of ABC.

(c) There exists a 2 by 2 matrix A such that
$$A\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\2\end{bmatrix}$$
 and $A\begin{bmatrix}2\\2\end{bmatrix} = \begin{bmatrix}2\\1\end{bmatrix}$.

(d) Let *A* be a 3 by 3 matrix. If $A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ has a unique solution, then

 $A\mathbf{x} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ has a unique solution.

(e) Let *A* be a 3 by 3 matrix. If $A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ has infinitely many solutions, then

$$A\mathbf{x} = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \text{ has infinitely many solutions.}$$

8. (10pts) Find X by inspection. Identify the size of X first. $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$

(a)
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 & 3 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

(b)
$$X \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$