Linear Algebra

Due Thursday, 3 March 2016 at 4:20 PM in EE105. This problem set covers Lectures 1-4. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Consider the linear system

$$
\begin{array}{r}
x+y-z=2 \\
x+2 y+z=3 \\
x+y+\left(k^{2}-5\right) z=k .
\end{array}
$$

(a) For which value(s) of k does this system have a unique solution?
(b) For which value(s) of k does the system have infinitely many solutions?
(c) For which value(s) of k is the system inconsistent? A system is inconsistent if there is no solution.
2. (10pts) Find a polynomial of degree ≤ 2 (a polynomial of the form $\left.f(t)=a+b t+c t^{2}\right)$ whose graph goes through the points (1, p_{1}), ($2, p_{2}$), ($3, p_{3}$), where p_{1}, p_{2}, p_{3} are arbitrary constants. Does such a polynomial exist for all values of p_{1}, p_{2}, p_{3} ?
3. (10pts) Is there a sequence of elementary row operations that transform

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \text { into }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \text { ? }
$$

Explain.
4. (10pts) For which values of the constants a and b is the vector $\left[\begin{array}{l}3 \\ a \\ b\end{array}\right]$ a linear
combination of $\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 6 \\ 4\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$?
5. (10pts) Boris has 32 bills in his wallet, in the denominations of US $\$ 1,5$, and 10 , worth $\$ 100$ in total. How many does Boris have of each denomination?
6. (15pts) The three types of elementary row operations are not independent: the row exchange operation can be accomplished by a sequence of the other two types of
row operations, namely, replacing (i.e., subtracting $k \times$ rowi from rowj) and scaling (i.e., multiplying rowi by $k, k \neq 0$). Apply a sequence of replacing and scaling operations to the 3 by 3 identity matrix I to obtain the permutation matrix:

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

7. (20pts) True or false. Justify your answer.
(a) If columns 1 and 2 of A are the same, so are columns 1 and 2 of $A B$.
(b) If rows 2 and 3 of A are the same, so are rows 2 and 3 of $A B C$.
(c) There exists a 2 by 2 matrix A such that $A\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $A\left[\begin{array}{l}2 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
(d) Let A be a 3 by 3 matrix. If $A \mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ has a unique solution, then

$$
A \mathbf{x}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { has a unique solution. }
$$

(e) Let A be a 3 by 3 matrix. If $A \mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ has infinitely many solutions, then

$$
A \mathbf{x}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { has infinitely many solutions. }
$$

8. (10pts) Find X by inspection. Identify the size of X first.
(a) $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right] X=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 & 3 \\ 1 & 0 & 1 & 0 & 1\end{array}\right]$
(b) $X\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16\end{array}\right]$.
