Due Wednesday, 26 May 2010 at 10:00 AM in EE102. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Find the rank and the eigenvalues of *A* and *B*:

- 2. (20pts) Show that the eigenvalues of A equal the eigenvalues of A^{T} (Hint: use characteristic polynomial to prove it.) Also show by an example that the eigenvectors of A and A^{T} are not the same.
- 3. (15pts) A 3 by 3 matrix A is known to have eigenvalues of -1,0,1. This information is enough to find three of these (give the answers where possible):
 - (a) The rank of A
 - (b) The determinant of $A^T A$
 - (c) The eigenvalues of $A^T A$
 - (d) The eigenvalues of $(A^2 + I)^{-1}$.
- 4. (15pts) Section 6.1, Problem 37
 - (a) Find the eigenvalues and eigenvectors of *A*. They depend on *c*:

$$A = \begin{bmatrix} 0.4 & 1-c \\ 0.6 & c \end{bmatrix}.$$

- (b) Show that A has just one line of eigenvectors when c = 1.6.
- (c) This is a Markov matrix when c = 0.8. Then A^n will approach what matrix A^{∞} ?
- 5. (20pts) Section 6.2, Problem 9

Suppose G_{k+2} is the *average* of two previous numbers G_{k+1} and G_k :

$$G_{k+2} = \frac{1}{2} (G_{k+1} + G_k) \text{ is } \begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix} = [A] \begin{bmatrix} G_{k+1} \\ G_k \end{bmatrix}.$$

$$G_{k+1} = G_{k+1}$$

- (a) Find the eigenvalues and eigenvectors of *A*.
- (b) Find the limit as $n \to \infty$ of the matrix $A^n = S \Lambda^n S^{-1}$.
- (c) If $G_0 = 0$ and $G_1 = 1$ show that the Gibonacci numbers approach 2/3.
- 6. (15pts) Section 6.2, Problem 32

Substitute $A = S\Lambda S^{-1}$ into the product $(A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_n I)$ and

1

explain why this produces the zero matrix. We are substituting the matrix A for the number λ in the polynomial $p(\lambda) = \det(A - \lambda I)$. The Cayley-Hamilton Theorem says that this product is always p(A) = zero matrix, even if A is not diagonalizable.