Due Thursday, 31 May 2012 at 4:30 PM in EE208. This problem set covers Lecture 32-35. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Let $A=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) Find the eigenvectors of A.
2. (15 pts) A 3 by 3 matrix A is known to have eigenvalues of $1,2,3$. Use this information to find the values of the following items (give the answers where possible):
(a) The rank of A
(b) The determinant of $A^{T} A$
(c) The eigenvalues of $A^{T} A$
(d) The trace of $A+2 I$
(e) The eigenvalues of $\left(A^{2}+I\right)^{-1}$.
3. (15pts) Let $A=\left[\begin{array}{cc}3 & 2 \\ -5 & -3\end{array}\right]$ and $B=\left[\begin{array}{cc}5 & 7 \\ -3 & -4\end{array}\right]$.
(a) Show that $A^{1024}=I$.
(b) Show that $B^{1024}=-B$.
4. (20pts)
(a) The block B has eigenvalues 1, 2 and C has eigenvalues 3,4 and D has eigenvalues 5,7 . Find the eigenvalues of the 4 by 4 matrix A :

$$
A=\left[\begin{array}{ll}
B & C \\
0 & D
\end{array}\right]=\left[\begin{array}{rrrr}
0 & 1 & 3 & 0 \\
-2 & 3 & 0 & 4 \\
0 & 0 & 6 & 1 \\
0 & 0 & 1 & 6
\end{array}\right] .
$$

(b) Find the determinants of $A=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$. (Try to find the eigenvalues
of A and then multiply them together.)
5. (15pts)

If $a_{k+2}=3 a_{k+1}-2 a_{k}$, and $a_{0}=2, a_{1}=3$, find the formula for a_{k}, where k is a nonnegative integer.
6. (20pts)
(a) Substitute $A=S \Lambda S^{-1}$ into the product $\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right) \cdots\left(A-\lambda_{n} I\right)$ and explain why this produces the zero matrix. We are substituting the matrix A for the number λ in the polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$. The Cayley-Hamilton Theorem says that this product is always $p(A)=$ zero matrix, even if A is not diagonalizable.
(b) Use the Cayley-Hamilton theorem to $A^{3}+3 A^{2}-13 A-17 I$, where

$$
A=\left[\begin{array}{rrr}
-3 & 2 & 0 \\
2 & -3 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

