## Linear Algebra

Problem Set 10

Due Tuesday, 11 June 2013 at 12:00 PM in EE208. This problem set covers Lecture 38-41. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (20pts) Section 6.6, Problem 2 and 3

Show that $A$ and $B$ are similar by finding $M$ so that $B=M^{-1} A M$.
(a) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
(c) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$
(d) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$.
2. (10pts) Section 6.6, Problem 6

There are sixteen 2 by 2 matrices whose entries are 0 's and 1's. Similar matrices go into the same family. How many families? How many matrices (total 16) in each family?
3. (15pts) Section 6.6 , Problem $17,18,20$

True or false, with a good reason.
(a) A symmetric matrix can't be similar to a nonsymmetric matrix.
(b) An invertible matrix can't be similar to a singular matrix.
(c) $A$ can't be similar to $-A$ unless $A=0$.
(d) $A$ can't be similar to $A+I$.
(e) If $B$ is invertible, then $A B$ is similar to $B A$.
(f) If $A$ is similar to $B$, then $A^{2}$ is similar to $B^{2}$.
(g) $A^{2}$ and $B^{2}$ can be similar when $A$ and $B$ are not similar (try $\lambda=0,0$ ).
4. (15pts) Section 6.4, Problem 11, 12
(a) Write $A$ and $B$ in the form of $\lambda_{1} \mathbf{q}_{1} \mathbf{q}_{1}^{T}+\lambda_{2} \mathbf{q}_{2} \mathbf{q}_{2}^{T}$ of the spectral theorem

$$
Q \Lambda Q^{T}: A=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right], B=\left[\begin{array}{cc}
9 & 12 \\
12 & 16
\end{array}\right]\left(\text { keep }\left\|\mathbf{q}_{1}\right\|=\left\|\mathbf{q}_{2}\right\|=1\right)
$$

(b) Every 2 by 2 symmetric matrix is $\lambda_{1} \mathbf{q}_{1} \mathbf{q}_{1}^{T}+\lambda_{2} \mathbf{q}_{2} \mathbf{q}_{2}^{T}=\lambda_{1} P_{1}+\lambda_{2} P_{2}$. Explain

$$
P_{1}+P_{2}=\mathbf{q}_{1} \mathbf{q}_{1}^{T}+\mathbf{q}_{2} \mathbf{q}_{2}^{T}=I \text { from columns time rows of } Q . \text { Why } P_{1} P_{2}=0 \text { ? }
$$

5. (15pts) True or false, with a reason or counterexample if false.
(a) A matrix with real eigenvalues and eigenvectors is symmetric.
(b) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric.
(c) The inverse of a symmetric matrix is symmetric.
(d) The eigenvector matrix $S$ of a symmetric matrix is symmetric.
6. (10pts) Section 6.5 , Problem 12

For what numbers $c$ and $d$ are $A$ and $B$ positive definite? Test the 3 determinants:

$$
A=\left[\begin{array}{lll}
c & 1 & 1 \\
1 & c & 1 \\
1 & 1 & c
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & d & 4 \\
3 & 4 & 5
\end{array}\right] .
$$

7. (15pts) Section 6.5, Problem 20

Give a quick reason why each of these statements is true:
(a) Every positive definite matrix is invertible.
(b) Every positive definite matrix has positive diagonal entries.
(c) The only positive definite projection matrix is $P=I$.
(d) A diagonal matrix with positive diagonal entries is positive definite.
(e) A symmetric matrix with a positive determinant might not be positive definite.

