Linear Algebra

Due Thursday, 11 June 2015 at 4:20 PM in EE106. This problem set covers Lecture 39-42. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (10pts) Find an orthogonal matrix Q that diagonalizes this symmetric matrix:

$$
A=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & -2 \\
2 & -2 & 0
\end{array}\right] .
$$

2. (10pts) Even if A is rectangular, the block matrix $B=\left[\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right]$ is symmetric.

Suppose $B \mathbf{x}=\lambda \mathbf{x}$, where $\mathbf{x}=\left[\begin{array}{l}\mathbf{y} \\ \mathbf{z}\end{array}\right], \quad A^{T} \mathbf{y}=\lambda \mathbf{z}$ and $A \mathbf{z}=\lambda \mathbf{y}$.
(a) Show that $-\lambda$ is also an eigenvalue. Find the corresponding eigenvector.
(b) Show that $A^{T} A \mathbf{z}=\lambda^{2} \mathbf{z}$.
3. (30pts) True or false, with a reason or counterexample if false.
(a) A matrix with real eigenvalues and eigenvectors is symmetric.
(b) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric.
(c) The inverse of a symmetric matrix is symmetric.
(d) If A is symmetric and similar to B, then B is symmetric.
(e) The eigenvector matrix S of a symmetric matrix is symmetric.
(f) Every positive definite symmetric matrix is nonsingular.
(g) The inverse of a positive definite matrix is positive definite.
(h) The sum of two positive definite matrices is positive definite.
(i) A diagonal matrix with positive diagonal entries is positive definite.
(j) The only positive definite projection matrix is $P=I$.
4. (10pts) Which of these classes of matrices do A and B belong to: Invertible, orthogonal, projection, permutation, diagonalizable, positive definite?

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], B=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] .
$$

5. (15pts) Suppose A is real antisymmetric, i.e., $A^{T}=-A$. Prove the following statements.
(a) $\mathbf{x}^{T} A \mathbf{x}=0$ for every real vector \mathbf{x}.
(b) The eigenvalues of A are pure imaginary (including zero).
(c) The determinant of A is positive or zero.
6. (10pts) For what numbers c and d will A and B have positive eigenvalues? Test the 3 determinants:

$$
A=\left[\begin{array}{lll}
c & 1 & 1 \\
1 & c & 1 \\
1 & 1 & c
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
1 & 3 & 0 \\
3 & d & 4 \\
0 & 4 & d
\end{array}\right] .
$$

7. (15pts) Let $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$.
(a) Compute $A^{T} A$ and $A A^{T}$ and their eigenvalues and unit eigenvectors.
(b) Find the singular values of A.
(c) Find a unit vector \mathbf{x} so that $\|A \mathbf{x}\|$ is maximized. What is the maximum value?
