Linear Algebra Problem Set 10

your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Let the linear transformation T from \mathbb{R}^3 to \mathbb{R}^3 be the reflection about the line spanned by

$$\mathbf{v} = \begin{bmatrix} 1\\0\\2 \end{bmatrix}.$$

- (a) Find an orthonormal eigenbasis β for *T*. Note that the basis β consists of orthonormal eigenvectors of *T*.
- (b) Find the matrix representation of T with respect to the basis β .
- (c) Find the matrix representation of *T* with respect to the standard basis of \mathbb{R}^3 .

2. (10pts) Let
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{bmatrix}$$
. Find an orthogonal matrix Q and a diagonal

matrix D such that $Q^{-1}AQ = D$.

- 3. (10pts) Show that any symmetric positive definite matrix A can be written as $A = BB^{T}$, where B is a matrix with orthogonal columns. *Hint*: There is an orthogonal matrix Q such that $Q^{-1}AQ = D$ is a diagonal matrix with positive diagonal entries. Write D as the square of a diagonal matrix.
- 4. (20pts) True or false, with a reason or counterexample if false.
 - (a) If A is a real symmetric matrix, then $rank(A)=rank(A^2)$.
 - (b) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric.
 - (c) If $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$ is positive definite, then *a* must be positive.
 - (d) If A is an orthogonal matrix, then there must exist a symmetric invertible matrix S such that $S^{-1}AS$ is diagonal.
 - (e) If *A* is symmetric and similar to *B*, then *B* is symmetric.
 - (f) If A is any real matrix, then $A^{T}A$ is diagonalizable.
 - (g) All symmetric positive definite matrices are invertible.
 - (h) The inverse of a symmetric positive definite matrix is positive definite.

- (i) The sum of two symmetric positive definite matrices is positive definite.
- (j) The only symmetric positive definite projection matrix is P = I.
- 5. (20pts) Suppose *A* is real antisymmetric, i.e., $A^T = -A$.
 - (a) Is A^2 antisymmetric as well? Or is A^2 symmetric? What can you say about the eigenvalues of A^2 ?
 - (b) Show that $\mathbf{x}^T A \mathbf{x} = 0$ for every real vector \mathbf{x} .
 - (c) Show that the eigenvalues of *A* are pure imaginary (including zero).
 - (d) Show that the determinant of *A* is positive or zero.
- 6. (10pts) For what numbers *c* and *d* will *A* and *B* have positive eigenvalues? Test the 3 determinants:

$$A = \begin{bmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 3 & 0 \\ 3 & b & 4 \\ 0 & 4 & b \end{bmatrix}.$$

- 7. (15pts) Let $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.
 - (a) Find the singular values of *A*.
 - (b) Find orthonormal vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ in \mathbb{R}^3 such that $A\mathbf{v}_1, A\mathbf{v}_2, A\mathbf{v}_3$ are orthogonal.
 - (c) Find a unit vector \mathbf{x} so that $||A\mathbf{x}||$ is maximized. What is the maximum value?