Linear Algebra

Problem Set 11

Due Tuesday, 12 June 2012 at 12:00 PM in EE208. This problem set covers Lecture 36-39. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Section 6.3, Problem 3

Solve $\frac{d \mathbf{u}}{d t}=\left[\begin{array}{rr}-2 & 3 \\ 2 & -3\end{array}\right] \mathbf{u}$ with $\mathbf{u}(0)=\left[\begin{array}{l}4 \\ 1\end{array}\right]$. What is $\mathbf{u}(\infty)$?
2. (20pts) Section 6.3, Problem 31

The cosine of a matrix is defined like e^{A}, by copying the series for $\cos t$:
$\cos t=1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\cdots \quad \cos A=I-\frac{A^{2}}{2!}+\frac{A^{4}}{4!}-\cdots$
(a) If $A \mathbf{x}=\lambda \mathbf{x}$, multiply each term times \mathbf{x} to find the eigenvalue of $\cos A$.
(b) Find the eigenvalues of $A=\left[\begin{array}{ll}\pi & \pi \\ \pi & \pi\end{array}\right]$ with eigenvectors (1,1) and ($1,-1$).

From the eigenvalues and eigenvectors of $\cos A$, find that matrix

$$
C=\cos A .
$$

3. (15pts) Find an invertible matrix S and a matrix C of the form $C=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ such that the given matrix has the form $A=\left[\begin{array}{rr}1 & -2 \\ 1 & 3\end{array}\right]=S C S^{-1}$.
4. (15pts) Plot the trajectory of the system $\mathbf{u}_{k+1}=A \mathbf{u}_{k}$, where $A=\left[\begin{array}{rr}0.8 & -0.5 \\ -0.1 & 1.0\end{array}\right]$, with initial condition $\mathbf{u}_{0}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$.
5. (15pts) Section 6.4, Problem 16

Even if A is rectangular, the block matrix $B=\left[\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right]$ is symmetric: $B \mathbf{x}=\lambda \mathbf{x}$ is $\left[\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right]\left[\begin{array}{l}\mathbf{y} \\ \mathbf{z}\end{array}\right]=\lambda\left[\begin{array}{l}\mathbf{y} \\ \mathbf{z}\end{array}\right]$ which is $\begin{aligned} & A \mathbf{z}=\lambda \mathbf{y} \\ & A^{T} \mathbf{y}=\lambda \mathbf{z} .\end{aligned}$
(a) Show that $-\lambda$ is also an eigenvalue, with the eigenvector $(\mathbf{y},-\mathbf{z})$.
(b) Show that $A^{T} A \mathbf{z}=\lambda^{2} \mathbf{z}$, so that λ^{2} is an eigenvalue of $A^{T} A$.
(c) If $A=I$ (2 by 2) find all four eigenvalues and eigenvectors of B.
6. (20pts) True or false, with a good reason:
(a) A can't be similar to $A+I$.
(b) A can't be similar to $-A$ unless $A=0$.
(c) A symmetric matrix can't be similar to a nonsymmetric matrix.
(d) An invertible matrix can't be similar to a singular matrix.
(e) If A is similar to B, then A^{2} is similar to B^{2}.
(f) If A^{2} is similar to B^{2}, then A is similar to B.
(g) $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$ is similar to $\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]$.
(h) $\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$ is similar to $\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$.

