Due Tuesday, 12 March 2013 at 12:00 PM in EE208. This problem set covers Lecture 5-7. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (10pts) If A is an n by n matrix, then the trace of A, denoted by $\operatorname{tr}(A)$, is defined to be the sum of diagonal entries of A. For example, if $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$, then
$\operatorname{tr}(A)=1+5+9=15$. Prove that if A is an m by n matrix and B is an n by m matrix, then $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
2. (15pts) Find the inverse (in any legal way) of

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 2 & 0 \\
0 & 3 & 0 & 0 \\
4 & 0 & 0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
3 & 7 & 0 & 0 \\
0 & 0 & 2 & 3 \\
0 & 0 & 3 & 5
\end{array}\right] .
$$

3. (20pts) Assuming that the stated inverses exist, prove the following equalities:
(a) $\left(A^{-1}+B^{-1}\right)^{-1}=A(A+B)^{-1} B$
(b) $(I+A B)^{-1} A=A(I+B A)^{-1}$
4. (15pts) If $A=(I+B)^{-1}(I-B)$ and $B=\left[\begin{array}{cccc}3 & 1 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 1 & 3\end{array}\right]$, find $(I+A)^{-1}$. (Please don't do a lot of calculations! Try to derive the formula of $(I+A)^{-1}$.)
5. (15pts) In each part solve the matrix equation for X.
(a) $X\left[\begin{array}{rrr}-1 & 0 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & 0\end{array}\right]=\left[\begin{array}{rrr}1 & 2 & 0 \\ -3 & 1 & 5\end{array}\right]$
(b) $X\left[\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}-5 & -1 & 0 \\ 6 & -3 & 7\end{array}\right]$
6. (15pts) Suppose $A=\left[\begin{array}{lllll}1 & 0 & 0 & 2 & 3 \\ 0 & 1 & 0 & a & 1 \\ 0 & 0 & 1 & 0 & b\end{array}\right]$ is row equivalent to
$B=\left[\begin{array}{rrrrr}2 & 6 & 3 & -2 & d \\ 1 & 4 & 3 & c & 19 \\ 0 & -1 & -1 & 1 & e\end{array}\right]$, i.e., there exists an invertible matrix E such that
$E A=B$. Find a, b, c, d, and e.
7. (10pts) Find the LU factorization of $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5\end{array}\right]$.
