Due Tuesday, 12 March 2013 at 12:00 PM in EE208. This problem set covers Lecture 5-7. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (10pts) If A is an n by n matrix, then the trace of A, denoted by tr(A), is defined to

be the sum of diagonal entries of A. For example, if $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, then

tr(A)=1+5+9=15. Prove that if A is an m by n matrix and B is an n by m matrix, then tr(AB)=tr(BA).

2. (15pts) Find the inverse (in any legal way) of

A =	0	0	0	1]	and	<i>B</i> =	1	2	0	0	
	0	0	2	0			3	7	0	0	
	0	3	0	0			0	0	2	3	
	_4	0	0	0			0	0	3	5	

- 3. (20pts) Assuming that the stated inverses exist, prove the following equalities:
 - (a) $(A^{-1} + B^{-1})^{-1} = A(A + B)^{-1}B$
 - (b) $(I + AB)^{-1}A = A(I + BA)^{-1}$
- (b) (I + AB) = A AA = A4. (15pts) If $A = (I + B)^{-1}(I B)$ and $B = \begin{bmatrix} 3 & 1 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$, find $(I + A)^{-1}$. (Please

don't do a lot of calculations! Try to derive the formula of $(I + A)^{-1}$.)

5. (15pts) In each part solve the matrix equation for X.

(a)
$$X \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ -3 & 1 & 5 \end{bmatrix}$$

(b) $X \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -5 & -1 & 0 \\ 6 & -3 & 7 \end{bmatrix}$
6. (15pts) Suppose $A = \begin{bmatrix} 1 & 0 & 0 & 2 & 3 \\ 0 & 1 & 0 & a & 1 \\ 0 & 0 & 1 & 0 & b \end{bmatrix}$ is row equivalent to

 $B = \begin{bmatrix} 2 & 6 & 3 & -2 & d \\ 1 & 4 & 3 & c & 19 \\ 0 & -1 & -1 & 1 & e \end{bmatrix}, \text{ i.e., there exists an invertible matrix } E \text{ such that}$

EA=*B*. Find *a*, *b*, *c*, *d*, and *e*.

7. (10pts) Find the LU factorization of
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{bmatrix}$$
.