Due Thursday, 19 March 2015 at 4:20 PM in EE106. This problem set covers Lecture 5-8. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (10pts) Prove that A is invertible if $a \neq 0$ and $a \neq b$ (find the pivots or A^{-1}):

$$
A=\left[\begin{array}{lll}
a & b & b \\
a & a & b \\
a & a & a
\end{array}\right] .
$$

2. (15pts) True or false (with a counterexample if false and a reason if true):
(a) A 3 by 3 matrix with a column of zeros is not invertible.
(b) A 3 by 3 matrix with two identical rows is not invertible.
(c) Every matrix with 1's down the main diagonal is invertible.
(d) If A is invertible, then A^{2} is invertible.
(e) If A is invertible, then $A+A^{T}$ is invertible.
3. (10pts) Find the inverse (in any legal way) of

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{llll}
2 & 9 & 0 & 0 \\
1 & 4 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] .
$$

4. (20pts) Assuming that the stated inverses exist, prove the following equalities:
(a) $A(A+B)^{-1} B=B(A+B)^{-1} A$
(b) $\left(I+A^{-1}\right)^{-1}=A(A+I)^{-1}=(A+I)^{-1} A$
5. (15pts) If $A=(I-B)(I+B)^{-1}$ and $B=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 4 & 5 & 0 \\ 0 & 0 & 6 & 7\end{array}\right]$, find $(I+A)^{-1}$. (Please don't do a lot of calculations! Try to derive the formula of $(I+A)^{-1}$.)
6. (10pts) Given a 3 by 3 matrix A and four vectors

$$
\mathbf{a}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
5 \\
3 \\
2
\end{array}\right], \mathbf{c}=\left[\begin{array}{r}
1 \\
3 \\
-1
\end{array}\right], \mathbf{d}=\left[\begin{array}{r}
-2 \\
2 \\
-3
\end{array}\right] \text { satisfying } A \mathbf{a}=\mathbf{b}, A \mathbf{b}=\mathbf{c}, A \mathbf{c}=\mathbf{d} \text {, find } A \mathbf{d} .
$$

7. (10pts) Suppose $A=\left[\begin{array}{lllll}1 & 2 & 3 & 1 & b \\ 2 & 5 & 3 & a & 0 \\ 1 & 0 & 8 & 6 & c\end{array}\right]$ is row equivalent to
$B=\left[\begin{array}{rrrrr}1 & 0 & 0 & -2 & 0 \\ 0 & 1 & 0 & d & -1 \\ 0 & 0 & 1 & 1 & e\end{array}\right]$, i.e., there exists an invertible matrix E such that $E A=B$.
Find a, b, c, d, and e.
8. (10pts) Find the LU factorization of $A=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20\end{array}\right]$.
