Linear Algebra

Due Tuesday, 15 March 2016 at 12:00 PM in EE105. This problem set covers
Lectures 5-8. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (20pts) For two invertible $n \times n$ matrices A and B, determine which the following formulas are necessarily true.
(a) A^{2} is invertible, and $\left(A^{2}\right)^{-1}=\left(A^{-1}\right)^{2}$
(b) $A+B$ is invertible, and $(A+B)^{-1}=A^{-1}+B^{-1}$
(c) $A^{-1} B$ is invertible, and $\left(A^{-1} B\right)^{-1}=B^{-1} A$
(d) $(A B)^{T}$ is invertible, and $\left((A B)^{T}\right)^{-1}=\left(A^{-1} B^{-1}\right)^{T}$
(e) $(A+B)^{2}=A^{2}+2 A B+B^{2}$
(f) $(A+B)(A-B)=A^{2}-B^{2}$
(g) $A B A^{-1}=B$
(h) $\left(A B A^{-1}\right)^{3}=A B^{3} A^{-1}$
(i) $(I+A)(I-A)=I-A^{2}$
(j) $\quad A B B^{-1} A^{-1}=B B^{-1} A^{-1} A$
2. (20pts) Answer the following questions.
(a) Can you find a 3×2 matrix A and a 2×3 matrix B such that the product $A B$ is invertible? Explain.
(b) If A is a singular $n \times n$ matrix, can you always find a nonzero $n \times n$ matrix B $(B \neq 0)$ such that $A B=0$? Explain.
(c) Find a nonzero 2×2 matrix A such that $A^{2}=0$.
(d) Find all invertible $n \times n$ matrices A such that $A^{2}=A$.
3. (15pts) Assuming that the stated inverses exist, prove the following equalities and statements:
(a) $(A+B) A^{-1}(A-B)=(A-B) A^{-1}(A+B)$
(b) If $A B=A+B$, then $A B=B A$.
(c) $\left(A^{-1}+B^{-1}\right)^{-1}=A-A(A+B)^{-1} A$
4. (10pts) Solve the matrix equation for A :

$$
A\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & 1 & 0 \\
3 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-3 & 1 & 5
\end{array}\right]
$$

Do this using paper and pencil. Show all your work.
5. (15pts) It is known that $P A=L U$, where

$$
P=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-3 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
-1 & 8 & -5 & 1
\end{array}\right], U=\left[\begin{array}{cccc}
1 & 2 & -1 & 4 \\
0 & 1 & 3 & 7 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

(a) Solve the system $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{c}14 \\ -3 \\ 33 \\ 9\end{array}\right]$. Do this using paper and pencil. Show all your work.
(b) Find the first row of A^{-1}. Do this using paper and pencil. Show all your work.
6. (20pts) Answer the following questions.
(a) Consider two $n \times n$ matrices A and B whose entries $a_{i j}$ and $b_{i j}$ are positive or zero. Suppose that $a_{i j} \leq p$, for $1 \leq i, j \leq n$, and all column sums of B are less than or equal to q, i.e., $\sum_{i=1}^{n} b_{i j} \leq q$, for $1 \leq j \leq n$. Show that all entries of $A B$ are less than or equal to $p q$.
(b) Let A be an $n \times n$ matrix whose entries are positive or zero. Suppose that all column sums of A are less than 1 . Let s be the largest column sum of A. Show that the entries of A^{m} are less than or equal to s^{m}, for all positive integer m.
(c) From (b), show that $\lim _{m \rightarrow \infty} A^{m}=0$ (meaning that all entries of A^{m} approach zero.

